Insights into the Roles of Different Iron Species on Zeolites for N2O Selective Catalytic Reduction by CO

IF 10.8 1区 环境科学与生态学 Q1 ENGINEERING, ENVIRONMENTAL
Yunshuo Wu, Xuanhao Wu, Jie Fan, Haiqiang Wang, Zhongbiao Wu
{"title":"Insights into the Roles of Different Iron Species on Zeolites for N2O Selective Catalytic Reduction by CO","authors":"Yunshuo Wu, Xuanhao Wu, Jie Fan, Haiqiang Wang, Zhongbiao Wu","doi":"10.1021/acs.est.4c06924","DOIUrl":null,"url":null,"abstract":"Iron zeolites are promising candidates for mitigating nitrous oxide (N<sub>2</sub>O), a potent greenhouse gas and contributor to stratospheric ozone destruction. However, the atomic-level mechanisms by which different iron species, including isolated sites, clusters, and particles, participate in N<sub>2</sub>O decomposition in the presence of CO still remain poorly understood, which hinders the application of the reaction in practical technology. Herein, through experiments and density functional theory (DFT) calculations, we identified that isolated iron sites were active for N<sub>2</sub>O activation to generate adsorbed O* species, which readily reacted with CO following the Eley–Rideal (E-R) mechanism. In contrast, Fe<sub>2</sub>O<sub>3</sub> particles exhibited a different reaction pathway, directly reacting with CO to generate oxygen vacancies (O<sub>v</sub>), which could efficiently dissociate N<sub>2</sub>O following the Mars-van Krevelen (MvK) mechanism. Moreover, the transformation of iron oxide clusters into undercoordinated FeO<sub><i>x</i></sub> species by CO was also revealed through various techniques, such as CO-temperature-programmed reduction (TPR), and <i>ab initio</i> molecular dynamics (AIMD) simulations. Our study provides deeper insights into the roles of different iron species in N<sub>2</sub>O-SCR by CO, and is anticipated to facilitate the understanding of multicomponent catalysis and the design of efficient iron-containing catalysts for practical applications.","PeriodicalId":36,"journal":{"name":"环境科学与技术","volume":"7 1","pages":""},"PeriodicalIF":10.8000,"publicationDate":"2024-12-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"环境科学与技术","FirstCategoryId":"1","ListUrlMain":"https://doi.org/10.1021/acs.est.4c06924","RegionNum":1,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, ENVIRONMENTAL","Score":null,"Total":0}
引用次数: 0

Abstract

Iron zeolites are promising candidates for mitigating nitrous oxide (N2O), a potent greenhouse gas and contributor to stratospheric ozone destruction. However, the atomic-level mechanisms by which different iron species, including isolated sites, clusters, and particles, participate in N2O decomposition in the presence of CO still remain poorly understood, which hinders the application of the reaction in practical technology. Herein, through experiments and density functional theory (DFT) calculations, we identified that isolated iron sites were active for N2O activation to generate adsorbed O* species, which readily reacted with CO following the Eley–Rideal (E-R) mechanism. In contrast, Fe2O3 particles exhibited a different reaction pathway, directly reacting with CO to generate oxygen vacancies (Ov), which could efficiently dissociate N2O following the Mars-van Krevelen (MvK) mechanism. Moreover, the transformation of iron oxide clusters into undercoordinated FeOx species by CO was also revealed through various techniques, such as CO-temperature-programmed reduction (TPR), and ab initio molecular dynamics (AIMD) simulations. Our study provides deeper insights into the roles of different iron species in N2O-SCR by CO, and is anticipated to facilitate the understanding of multicomponent catalysis and the design of efficient iron-containing catalysts for practical applications.

Abstract Image

求助全文
约1分钟内获得全文 求助全文
来源期刊
环境科学与技术
环境科学与技术 环境科学-工程:环境
CiteScore
17.50
自引率
9.60%
发文量
12359
审稿时长
2.8 months
期刊介绍: Environmental Science & Technology (ES&T) is a co-sponsored academic and technical magazine by the Hubei Provincial Environmental Protection Bureau and the Hubei Provincial Academy of Environmental Sciences. Environmental Science & Technology (ES&T) holds the status of Chinese core journals, scientific papers source journals of China, Chinese Science Citation Database source journals, and Chinese Academic Journal Comprehensive Evaluation Database source journals. This publication focuses on the academic field of environmental protection, featuring articles related to environmental protection and technical advancements.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信