Jessica Ribeiro Soares, Kerly Jessenia Moncaleano Robledo, Vinicius Carius de Souza, Lana Laene Lima Dias, Lazara Aline Simões Silva, Emerson Campos da Silveira, Claudinei da Silva Souza, Elisandra Silva Sousa, Pedro Alexandre Sodrzeieski, Yoan Camilo Guzman Sarmiento, Elyabe Monteiro de Matos, Thais Castilho de Arruda Falcão, Lilian da Silva Fialho, Valeria Monteze Guimaraes, Lyderson Facio Viccini, Flaviani Gabriela Pierdona, Elisson Romanel, Jim Fouracre, Wagner Campos Otoni, Fabio Tebaldi Silveira Nogueira
{"title":"Proper activity of the age-dependent miR156 is required for leaf heteroblasty and extrafloral nectary development in Passiflora spp.","authors":"Jessica Ribeiro Soares, Kerly Jessenia Moncaleano Robledo, Vinicius Carius de Souza, Lana Laene Lima Dias, Lazara Aline Simões Silva, Emerson Campos da Silveira, Claudinei da Silva Souza, Elisandra Silva Sousa, Pedro Alexandre Sodrzeieski, Yoan Camilo Guzman Sarmiento, Elyabe Monteiro de Matos, Thais Castilho de Arruda Falcão, Lilian da Silva Fialho, Valeria Monteze Guimaraes, Lyderson Facio Viccini, Flaviani Gabriela Pierdona, Elisson Romanel, Jim Fouracre, Wagner Campos Otoni, Fabio Tebaldi Silveira Nogueira","doi":"10.1111/nph.20343","DOIUrl":null,"url":null,"abstract":"<p>\n</p><ul>\n<li>Passion flower extrafloral nectaries (EFNs) protrude from leaves and facilitate mutualistic interactions with insects; however, how age cues control EFN growth remains poorly understood.</li>\n<li>Here, we examined leaf and EFN morphology and development of two <i>Passiflora</i> species with distinct leaf shapes, and compared the phenotype of these to transgenics with manipulated activity of the age-dependent miR156, which targets several <i>SQUAMOSA PROMOTER-BINDING PROTEIN-LIKE</i> (<i>SPL</i>) transcription factors.</li>\n<li>Low levels of miR156 correlated with leaf maturation and EFN formation in <i>Passiflora edulis and P. cincinnata</i>. Accordingly, manipulating miR156 activity affected leaf heteroblasty and EFN development. miR156-overexpressing leaves exhibited less abundant and tiny EFNs in both <i>Passiflora</i> species. EFN abundance remained mostly unchanged when miR156 activity was reduced, but it led to larger EFNs in <i>P. cincinnata</i>. Transcriptome analysis of young leaf primordia revealed that miR156-targeted <i>SPLs</i> may be required to properly express leaf and EFN-associated genes. Importantly, altered miR156 activity impacted sugar profiles of the nectar and modified ecological relationships between EFNs and ants.</li>\n<li>Our work provides evidence that the miR156/<i>SPL</i> module indirectly regulates EFN development in an age-dependent manner and that the EFN development program is closely associated with the heteroblastic developmental program of the EFN-bearing leaves.</li>\n</ul><p></p>","PeriodicalId":214,"journal":{"name":"New Phytologist","volume":"6 1","pages":""},"PeriodicalIF":8.3000,"publicationDate":"2024-12-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"New Phytologist","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1111/nph.20343","RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"PLANT SCIENCES","Score":null,"Total":0}
引用次数: 0
Abstract
Passion flower extrafloral nectaries (EFNs) protrude from leaves and facilitate mutualistic interactions with insects; however, how age cues control EFN growth remains poorly understood.
Here, we examined leaf and EFN morphology and development of two Passiflora species with distinct leaf shapes, and compared the phenotype of these to transgenics with manipulated activity of the age-dependent miR156, which targets several SQUAMOSA PROMOTER-BINDING PROTEIN-LIKE (SPL) transcription factors.
Low levels of miR156 correlated with leaf maturation and EFN formation in Passiflora edulis and P. cincinnata. Accordingly, manipulating miR156 activity affected leaf heteroblasty and EFN development. miR156-overexpressing leaves exhibited less abundant and tiny EFNs in both Passiflora species. EFN abundance remained mostly unchanged when miR156 activity was reduced, but it led to larger EFNs in P. cincinnata. Transcriptome analysis of young leaf primordia revealed that miR156-targeted SPLs may be required to properly express leaf and EFN-associated genes. Importantly, altered miR156 activity impacted sugar profiles of the nectar and modified ecological relationships between EFNs and ants.
Our work provides evidence that the miR156/SPL module indirectly regulates EFN development in an age-dependent manner and that the EFN development program is closely associated with the heteroblastic developmental program of the EFN-bearing leaves.
期刊介绍:
New Phytologist is an international electronic journal published 24 times a year. It is owned by the New Phytologist Foundation, a non-profit-making charitable organization dedicated to promoting plant science. The journal publishes excellent, novel, rigorous, and timely research and scholarship in plant science and its applications. The articles cover topics in five sections: Physiology & Development, Environment, Interaction, Evolution, and Transformative Plant Biotechnology. These sections encompass intracellular processes, global environmental change, and encourage cross-disciplinary approaches. The journal recognizes the use of techniques from molecular and cell biology, functional genomics, modeling, and system-based approaches in plant science. Abstracting and Indexing Information for New Phytologist includes Academic Search, AgBiotech News & Information, Agroforestry Abstracts, Biochemistry & Biophysics Citation Index, Botanical Pesticides, CAB Abstracts®, Environment Index, Global Health, and Plant Breeding Abstracts, and others.