Atomic-Scale Interface Modification in Complex Oxide Heterojunctions for Near-Infrared Photodetection

IF 15.8 1区 材料科学 Q1 CHEMISTRY, MULTIDISCIPLINARY
ACS Nano Pub Date : 2024-12-12 DOI:10.1021/acsnano.4c09023
Sanghyeok Ryou, Sanghyeon Mo, Doyeop Kim, Sungjun Choi, Jaewhan Oh, Yongsoo Yang, Kitae Eom, Hyungwoo Lee
{"title":"Atomic-Scale Interface Modification in Complex Oxide Heterojunctions for Near-Infrared Photodetection","authors":"Sanghyeok Ryou, Sanghyeon Mo, Doyeop Kim, Sungjun Choi, Jaewhan Oh, Yongsoo Yang, Kitae Eom, Hyungwoo Lee","doi":"10.1021/acsnano.4c09023","DOIUrl":null,"url":null,"abstract":"Photodetectors that detect near-infrared (NIR) light serve as important components in contemporary energy-efficient optoelectronic devices. However, detecting the low-energy photons of the NIR light has long been challenging since the ease of photoexcitation inevitably involves increasing the background current in the dark. Herein, we report the atomic-scale interface modification in SrRuO<sub>3</sub>/LaAlO<sub>3</sub>/Nb-doped SrTiO<sub>3</sub> (SRO/LAO/Nb:STO) heterostructures for NIR photodetection. The interfacial band alignment by a polar monolayer LAO allows precise tuning of the Schottky barrier to achieve a specific energy band profile suitable for the NIR photodetection. The SRO/LAO/Nb:STO heterojunctions show a high photoresponsivity up to ∼1.1 mA/W under NIR light irradiation (λ = 850 nm), while keeping the pA-scale dark current. The increase in the responsivity by interface modification is evaluated at a maximum of 1371%. Based on the enhanced NIR photoresponsivity, as a proof of concept, we demonstrate the spatial imaging of NIR signals using a conceptual array of SRO/LAO/Nb:STO heterojunctions. In addition, the experimental-data-based simulation verifies that the array device can implement pulse-number-dependent plasticity, which is based on the characteristic persistent photoconductivity. This study suggests that atomic-scale interface modification is a facile and powerful method for optimizing the photoresponsive properties of complex-oxide-based heterojunctions.","PeriodicalId":21,"journal":{"name":"ACS Nano","volume":"38 1","pages":""},"PeriodicalIF":15.8000,"publicationDate":"2024-12-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Nano","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.1021/acsnano.4c09023","RegionNum":1,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

Abstract

Photodetectors that detect near-infrared (NIR) light serve as important components in contemporary energy-efficient optoelectronic devices. However, detecting the low-energy photons of the NIR light has long been challenging since the ease of photoexcitation inevitably involves increasing the background current in the dark. Herein, we report the atomic-scale interface modification in SrRuO3/LaAlO3/Nb-doped SrTiO3 (SRO/LAO/Nb:STO) heterostructures for NIR photodetection. The interfacial band alignment by a polar monolayer LAO allows precise tuning of the Schottky barrier to achieve a specific energy band profile suitable for the NIR photodetection. The SRO/LAO/Nb:STO heterojunctions show a high photoresponsivity up to ∼1.1 mA/W under NIR light irradiation (λ = 850 nm), while keeping the pA-scale dark current. The increase in the responsivity by interface modification is evaluated at a maximum of 1371%. Based on the enhanced NIR photoresponsivity, as a proof of concept, we demonstrate the spatial imaging of NIR signals using a conceptual array of SRO/LAO/Nb:STO heterojunctions. In addition, the experimental-data-based simulation verifies that the array device can implement pulse-number-dependent plasticity, which is based on the characteristic persistent photoconductivity. This study suggests that atomic-scale interface modification is a facile and powerful method for optimizing the photoresponsive properties of complex-oxide-based heterojunctions.

Abstract Image

求助全文
约1分钟内获得全文 求助全文
来源期刊
ACS Nano
ACS Nano 工程技术-材料科学:综合
CiteScore
26.00
自引率
4.10%
发文量
1627
审稿时长
1.7 months
期刊介绍: ACS Nano, published monthly, serves as an international forum for comprehensive articles on nanoscience and nanotechnology research at the intersections of chemistry, biology, materials science, physics, and engineering. The journal fosters communication among scientists in these communities, facilitating collaboration, new research opportunities, and advancements through discoveries. ACS Nano covers synthesis, assembly, characterization, theory, and simulation of nanostructures, nanobiotechnology, nanofabrication, methods and tools for nanoscience and nanotechnology, and self- and directed-assembly. Alongside original research articles, it offers thorough reviews, perspectives on cutting-edge research, and discussions envisioning the future of nanoscience and nanotechnology.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信