On the Prediction of Aerosol-Cloud Interactions Within a Data-Driven Framework

IF 4.6 1区 地球科学 Q1 GEOSCIENCES, MULTIDISCIPLINARY
Xiang-Yu Li, Hailong Wang, TC Chakraborty, Armin Sorooshian, Luke D. Ziemba, Christiane Voigt, Kenneth Lee Thornhill, Emma Yuan
{"title":"On the Prediction of Aerosol-Cloud Interactions Within a Data-Driven Framework","authors":"Xiang-Yu Li,&nbsp;Hailong Wang,&nbsp;TC Chakraborty,&nbsp;Armin Sorooshian,&nbsp;Luke D. Ziemba,&nbsp;Christiane Voigt,&nbsp;Kenneth Lee Thornhill,&nbsp;Emma Yuan","doi":"10.1029/2024GL110757","DOIUrl":null,"url":null,"abstract":"<p>Aerosol-cloud interactions (ACI) pose the largest uncertainty for climate projection. Among many challenges of understanding ACI, the question of whether ACI can be deterministically predicted has not been explicitly answered. Here we attempt to answer this question by predicting cloud droplet number concentration <span></span><math>\n <semantics>\n <mrow>\n <msub>\n <mi>N</mi>\n <mi>c</mi>\n </msub>\n </mrow>\n <annotation> ${N}_{c}$</annotation>\n </semantics></math> from aerosol number concentration <span></span><math>\n <semantics>\n <mrow>\n <msub>\n <mi>N</mi>\n <mi>a</mi>\n </msub>\n </mrow>\n <annotation> ${N}_{a}$</annotation>\n </semantics></math> and ambient conditions using a data-driven framework. We use aerosol properties, vertical velocity fluctuations, and meteorological states from the ACTIVATE field observations (2020–2022) as predictors to estimate <span></span><math>\n <semantics>\n <mrow>\n <msub>\n <mi>N</mi>\n <mi>c</mi>\n </msub>\n </mrow>\n <annotation> ${N}_{c}$</annotation>\n </semantics></math>. We show that the campaign-wide <span></span><math>\n <semantics>\n <mrow>\n <msub>\n <mi>N</mi>\n <mi>c</mi>\n </msub>\n </mrow>\n <annotation> ${N}_{c}$</annotation>\n </semantics></math> can be successfully predicted using machine learning models despite the strongly nonlinear and multi-scale nature of ACI. However, the observation-trained machine learning model fails to predict <span></span><math>\n <semantics>\n <mrow>\n <msub>\n <mi>N</mi>\n <mi>c</mi>\n </msub>\n </mrow>\n <annotation> ${N}_{c}$</annotation>\n </semantics></math> in individual cases while it successfully predicts <span></span><math>\n <semantics>\n <mrow>\n <msub>\n <mi>N</mi>\n <mi>c</mi>\n </msub>\n </mrow>\n <annotation> ${N}_{c}$</annotation>\n </semantics></math> of randomly selected data points that cover a broad spatiotemporal scale. This suggests that, within a data-driven framework, the <span></span><math>\n <semantics>\n <mrow>\n <msub>\n <mi>N</mi>\n <mi>c</mi>\n </msub>\n </mrow>\n <annotation> ${N}_{c}$</annotation>\n </semantics></math> prediction is uncertain at fine spatiotemporal scales.</p>","PeriodicalId":12523,"journal":{"name":"Geophysical Research Letters","volume":"51 24","pages":""},"PeriodicalIF":4.6000,"publicationDate":"2024-12-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1029/2024GL110757","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Geophysical Research Letters","FirstCategoryId":"89","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1029/2024GL110757","RegionNum":1,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"GEOSCIENCES, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

Abstract

Aerosol-cloud interactions (ACI) pose the largest uncertainty for climate projection. Among many challenges of understanding ACI, the question of whether ACI can be deterministically predicted has not been explicitly answered. Here we attempt to answer this question by predicting cloud droplet number concentration N c ${N}_{c}$ from aerosol number concentration N a ${N}_{a}$ and ambient conditions using a data-driven framework. We use aerosol properties, vertical velocity fluctuations, and meteorological states from the ACTIVATE field observations (2020–2022) as predictors to estimate N c ${N}_{c}$ . We show that the campaign-wide N c ${N}_{c}$ can be successfully predicted using machine learning models despite the strongly nonlinear and multi-scale nature of ACI. However, the observation-trained machine learning model fails to predict N c ${N}_{c}$ in individual cases while it successfully predicts N c ${N}_{c}$ of randomly selected data points that cover a broad spatiotemporal scale. This suggests that, within a data-driven framework, the N c ${N}_{c}$ prediction is uncertain at fine spatiotemporal scales.

Abstract Image

数据驱动框架下气溶胶-云相互作用的预测
气溶胶-云相互作用(ACI)对气候预测构成最大的不确定性。在理解ACI的许多挑战中,ACI是否可以确定性预测的问题尚未得到明确的回答。在这里,我们试图通过使用数据驱动的框架,从气溶胶数浓度Na${N}_{a}$和环境条件预测云滴数浓度Nc${N}_{c}$来回答这个问题。我们使用气溶胶特性、垂直速度波动和ACTIVATE现场观测(2020-2022)的气象状态作为预测因子来估计Nc${N}_{c}$。我们表明,尽管ACI具有强烈的非线性和多尺度性质,但使用机器学习模型可以成功地预测整个运动范围的Nc${N}_{c}$。然而,观察训练的机器学习模型在个别情况下无法预测Nc${N}_{c}$,而它成功地预测了覆盖广泛时空尺度的随机选择数据点的Nc${N}_{c}$。这表明,在数据驱动的框架下,Nc${N}_{c}$预测在精细的时空尺度上是不确定的。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Geophysical Research Letters
Geophysical Research Letters 地学-地球科学综合
CiteScore
9.00
自引率
9.60%
发文量
1588
审稿时长
2.2 months
期刊介绍: Geophysical Research Letters (GRL) publishes high-impact, innovative, and timely research on major scientific advances in all the major geoscience disciplines. Papers are communications-length articles and should have broad and immediate implications in their discipline or across the geosciences. GRLmaintains the fastest turn-around of all high-impact publications in the geosciences and works closely with authors to ensure broad visibility of top papers.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信