{"title":"Biodegradable cellulose ester blends: studies, compatibilization, biodegradable behavior, and applications. A review","authors":"Matias Menossi, Manjusri Misra, Amar K. Mohanty","doi":"10.1016/j.progpolymsci.2024.101919","DOIUrl":null,"url":null,"abstract":"Growing plastic production, population, and consumption are driving increased environmental pollution and waste. Without change, 12 billion metric tons of plastic waste could fill landfills or natural environments by 2050. Moving beyond the fossil fuel era towards sustainability demands using advanced renewable materials that emit minimal, or net-zero carbon emissions. Cellulose, the most abundant biopolymer found in nature, is a compelling foundation for designing functional materials. This review paper fills the void regarding the esterification of cellulose to obtain specific organic cellulose esters (CEs), its modification by incorporating agents for improved processability, and blending with biopolymers as a powerful method for obtaining materials with enhanced property-to-cost performance. Further investigation is necessary to delve into the correlations among miscibility, structure, and properties of these materials to fully exploit the potential of this approach. The miscibility of CEs with other biopolymers can vary, with partial or complete miscibility attributed to the chemical nature of polymers, hydrophilic and hydrophobic properties. This variation is a key reason for studying current compatibilization strategies. This article aims to examine the advancements in strategies for compatibilizing CE blends with biodegradable polymers, along with exploring the biodegradation behavior and applications of both unmodified and modified blends.","PeriodicalId":413,"journal":{"name":"Progress in Polymer Science","volume":"42 1","pages":""},"PeriodicalIF":26.0000,"publicationDate":"2024-12-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Progress in Polymer Science","FirstCategoryId":"92","ListUrlMain":"https://doi.org/10.1016/j.progpolymsci.2024.101919","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"POLYMER SCIENCE","Score":null,"Total":0}
引用次数: 0
Abstract
Growing plastic production, population, and consumption are driving increased environmental pollution and waste. Without change, 12 billion metric tons of plastic waste could fill landfills or natural environments by 2050. Moving beyond the fossil fuel era towards sustainability demands using advanced renewable materials that emit minimal, or net-zero carbon emissions. Cellulose, the most abundant biopolymer found in nature, is a compelling foundation for designing functional materials. This review paper fills the void regarding the esterification of cellulose to obtain specific organic cellulose esters (CEs), its modification by incorporating agents for improved processability, and blending with biopolymers as a powerful method for obtaining materials with enhanced property-to-cost performance. Further investigation is necessary to delve into the correlations among miscibility, structure, and properties of these materials to fully exploit the potential of this approach. The miscibility of CEs with other biopolymers can vary, with partial or complete miscibility attributed to the chemical nature of polymers, hydrophilic and hydrophobic properties. This variation is a key reason for studying current compatibilization strategies. This article aims to examine the advancements in strategies for compatibilizing CE blends with biodegradable polymers, along with exploring the biodegradation behavior and applications of both unmodified and modified blends.
期刊介绍:
Progress in Polymer Science is a journal that publishes state-of-the-art overview articles in the field of polymer science and engineering. These articles are written by internationally recognized authorities in the discipline, making it a valuable resource for staying up-to-date with the latest developments in this rapidly growing field.
The journal serves as a link between original articles, innovations published in patents, and the most current knowledge of technology. It covers a wide range of topics within the traditional fields of polymer science, including chemistry, physics, and engineering involving polymers. Additionally, it explores interdisciplinary developing fields such as functional and specialty polymers, biomaterials, polymers in drug delivery, polymers in electronic applications, composites, conducting polymers, liquid crystalline materials, and the interphases between polymers and ceramics. The journal also highlights new fabrication techniques that are making significant contributions to the field.
The subject areas covered by Progress in Polymer Science include biomaterials, materials chemistry, organic chemistry, polymers and plastics, surfaces, coatings and films, and nanotechnology. The journal is indexed and abstracted in various databases, including Materials Science Citation Index, Chemical Abstracts, Engineering Index, Current Contents, FIZ Karlsruhe, Scopus, and INSPEC.