{"title":"Quantification of activated carbon functional groups and active surface area by TPD-MS and their impact on supercapacitor performance","authors":"Bénédicte Réty, Hui-Yi Yiin, Camélia Matei Ghimbeu","doi":"10.1016/j.ensm.2024.103963","DOIUrl":null,"url":null,"abstract":"Carbon oxygenated functional groups and active sites play an important role in the interactions with the electrolytes in aqueous supercapacitors. For the first time, correlations between each type of O-surface groups and electrochemical performance are established by means of thermodesorption coupled with mass spectrometry (TPD-MS). A set of five activated carbons and one soft-salt templated carbon, were studied in three different pH electrolytes, 1M H<sub>2</sub>SO<sub>4</sub>, 1M KOH and 1M Na<sub>2</sub>SO<sub>4</sub>. Linear correlations between surface groups and capacitance were found: acidic groups such as carboxylic acid and phenol-ether groups improve capacitance, whereas carbonyl-quinone groups are detrimental. Moreover, active surface area (ASA) is for the first time measured for activated carbons thanks to a new protocol, which minimises material burn-off during oxygen chemisorption. In addition, a new approach consisting in the quantification of the ASA is proposed. It has been highlighted that certain active sites are linearly correlated to an improvement of capacitance. Although the oxygen surface groups and ASA improve the capacitance via pseudo-capacitance phenomena, the capacitive mechanisms, governed by the porosity of the activated carbons, are shown to be predominant. Among all materials, the soft-salt templated carbon gives the best electrochemical performance. Indeed, it combines a large quantity of carboxylic acid and phenol-ether surface groups as well as appropriate ASA. Moreover, it has a high specific surface area (2556 m²·g<sup>-1</sup>) and optimal pore size (0.88 nm). All these characteristics, provide a high capacitance, a high rate capability and a high capacitance retention after 10,000 cycles.","PeriodicalId":306,"journal":{"name":"Energy Storage Materials","volume":"40 1","pages":""},"PeriodicalIF":18.9000,"publicationDate":"2024-12-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Energy Storage Materials","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.1016/j.ensm.2024.103963","RegionNum":1,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
引用次数: 0
Abstract
Carbon oxygenated functional groups and active sites play an important role in the interactions with the electrolytes in aqueous supercapacitors. For the first time, correlations between each type of O-surface groups and electrochemical performance are established by means of thermodesorption coupled with mass spectrometry (TPD-MS). A set of five activated carbons and one soft-salt templated carbon, were studied in three different pH electrolytes, 1M H2SO4, 1M KOH and 1M Na2SO4. Linear correlations between surface groups and capacitance were found: acidic groups such as carboxylic acid and phenol-ether groups improve capacitance, whereas carbonyl-quinone groups are detrimental. Moreover, active surface area (ASA) is for the first time measured for activated carbons thanks to a new protocol, which minimises material burn-off during oxygen chemisorption. In addition, a new approach consisting in the quantification of the ASA is proposed. It has been highlighted that certain active sites are linearly correlated to an improvement of capacitance. Although the oxygen surface groups and ASA improve the capacitance via pseudo-capacitance phenomena, the capacitive mechanisms, governed by the porosity of the activated carbons, are shown to be predominant. Among all materials, the soft-salt templated carbon gives the best electrochemical performance. Indeed, it combines a large quantity of carboxylic acid and phenol-ether surface groups as well as appropriate ASA. Moreover, it has a high specific surface area (2556 m²·g-1) and optimal pore size (0.88 nm). All these characteristics, provide a high capacitance, a high rate capability and a high capacitance retention after 10,000 cycles.
期刊介绍:
Energy Storage Materials is a global interdisciplinary journal dedicated to sharing scientific and technological advancements in materials and devices for advanced energy storage and related energy conversion, such as in metal-O2 batteries. The journal features comprehensive research articles, including full papers and short communications, as well as authoritative feature articles and reviews by leading experts in the field.
Energy Storage Materials covers a wide range of topics, including the synthesis, fabrication, structure, properties, performance, and technological applications of energy storage materials. Additionally, the journal explores strategies, policies, and developments in the field of energy storage materials and devices for sustainable energy.
Published papers are selected based on their scientific and technological significance, their ability to provide valuable new knowledge, and their relevance to the international research community.