Jarom G. Sederholm, Lin Li, Zheng Liu, Kai-Wei Lan, En Ju Cho, Yashraj Gurumukhi, Mohammed Jubair Dipto, Alexander Ahmari, Jin Yu, Megan Haynes, Nenad Miljkovic, Nicola H. Perry, Pingfeng Wang, Paul V. Braun, Marta C. Hatzell
{"title":"Emerging Trends and Future Opportunities for Battery Recycling","authors":"Jarom G. Sederholm, Lin Li, Zheng Liu, Kai-Wei Lan, En Ju Cho, Yashraj Gurumukhi, Mohammed Jubair Dipto, Alexander Ahmari, Jin Yu, Megan Haynes, Nenad Miljkovic, Nicola H. Perry, Pingfeng Wang, Paul V. Braun, Marta C. Hatzell","doi":"10.1021/acsenergylett.4c02198","DOIUrl":null,"url":null,"abstract":"The global lithium-ion battery recycling capacity needs to increase by a factor of 50 in the next decade to meet the projected adoption of electric vehicles. During this expansion of recycling capacity, it is unclear which technologies are most appropriate to reduce costs and environmental impacts. Here, we describe the current and future recycling capacity situation and summarize methods for quantifying costs and environmental impacts of battery recycling methods with a focus on cathode active materials. Second use, electrification of pyrometallurgy and hydrometallurgy, direct recycling, and electrochemical recycling methods are discussed as leading-edge methods for overcoming state of the art battery recycling challenges. The paper ends with a discussion of future issues and considerations regarding solid-state batteries and co-optimization of battery design for recycling.","PeriodicalId":16,"journal":{"name":"ACS Energy Letters ","volume":"29 1","pages":""},"PeriodicalIF":19.3000,"publicationDate":"2024-12-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Energy Letters ","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.1021/acsenergylett.4c02198","RegionNum":1,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
引用次数: 0
Abstract
The global lithium-ion battery recycling capacity needs to increase by a factor of 50 in the next decade to meet the projected adoption of electric vehicles. During this expansion of recycling capacity, it is unclear which technologies are most appropriate to reduce costs and environmental impacts. Here, we describe the current and future recycling capacity situation and summarize methods for quantifying costs and environmental impacts of battery recycling methods with a focus on cathode active materials. Second use, electrification of pyrometallurgy and hydrometallurgy, direct recycling, and electrochemical recycling methods are discussed as leading-edge methods for overcoming state of the art battery recycling challenges. The paper ends with a discussion of future issues and considerations regarding solid-state batteries and co-optimization of battery design for recycling.
ACS Energy Letters Energy-Renewable Energy, Sustainability and the Environment
CiteScore
31.20
自引率
5.00%
发文量
469
审稿时长
1 months
期刊介绍:
ACS Energy Letters is a monthly journal that publishes papers reporting new scientific advances in energy research. The journal focuses on topics that are of interest to scientists working in the fundamental and applied sciences. Rapid publication is a central criterion for acceptance, and the journal is known for its quick publication times, with an average of 4-6 weeks from submission to web publication in As Soon As Publishable format.
ACS Energy Letters is ranked as the number one journal in the Web of Science Electrochemistry category. It also ranks within the top 10 journals for Physical Chemistry, Energy & Fuels, and Nanoscience & Nanotechnology.
The journal offers several types of articles, including Letters, Energy Express, Perspectives, Reviews, Editorials, Viewpoints and Energy Focus. Additionally, authors have the option to submit videos that summarize or support the information presented in a Perspective or Review article, which can be highlighted on the journal's website. ACS Energy Letters is abstracted and indexed in Chemical Abstracts Service/SciFinder, EBSCO-summon, PubMed, Web of Science, Scopus and Portico.