Comprehensive Strategies for Paclitaxel Production: Insights from Plant Cell Culture, Endophytic Microorganisms, and Synthetic Biology

IF 8.7 1区 农林科学 Q1 Agricultural and Biological Sciences
Jia-Yuan Yin, Meng Lai, Xiao-Ying Yu, Ding-Ding Su, Xing-Yao Xiong, Yan-Lin Li
{"title":"Comprehensive Strategies for Paclitaxel Production: Insights from Plant Cell Culture, Endophytic Microorganisms, and Synthetic Biology","authors":"Jia-Yuan Yin, Meng Lai, Xiao-Ying Yu, Ding-Ding Su, Xing-Yao Xiong, Yan-Lin Li","doi":"10.1093/hr/uhae346","DOIUrl":null,"url":null,"abstract":"Taxus L., an important ornamental, economic, and medicinal plant, is renowned for producing paclitaxel (Taxol®), a potent chemotherapeutic agent. The biosynthesis of paclitaxel involves intricate biosynthetic pathways, spanning multiple enzymatic steps. Despite advances, challenges remain in optimizing production methods. Microorganisms, particularly endophytic fungi, show potential in producing paclitaxel, though with limitations in yield and stability. The suspension culture of Taxus cells is a promising alternative, offering sustainable production, yet it requires further genetic and environmental optimization. Recent advancements in synthetic biology have enabled partial reconstitution of paclitaxel pathways in microbial and plant chassis. However, achieving complete biosynthesis remains an ongoing challenge. This review consolidates recent progress in paclitaxel biosynthesis, highlighting current limitations and future prospects for industrial-scale production.","PeriodicalId":13179,"journal":{"name":"Horticulture Research","volume":"234 1","pages":""},"PeriodicalIF":8.7000,"publicationDate":"2024-12-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Horticulture Research","FirstCategoryId":"97","ListUrlMain":"https://doi.org/10.1093/hr/uhae346","RegionNum":1,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"Agricultural and Biological Sciences","Score":null,"Total":0}
引用次数: 0

Abstract

Taxus L., an important ornamental, economic, and medicinal plant, is renowned for producing paclitaxel (Taxol®), a potent chemotherapeutic agent. The biosynthesis of paclitaxel involves intricate biosynthetic pathways, spanning multiple enzymatic steps. Despite advances, challenges remain in optimizing production methods. Microorganisms, particularly endophytic fungi, show potential in producing paclitaxel, though with limitations in yield and stability. The suspension culture of Taxus cells is a promising alternative, offering sustainable production, yet it requires further genetic and environmental optimization. Recent advancements in synthetic biology have enabled partial reconstitution of paclitaxel pathways in microbial and plant chassis. However, achieving complete biosynthesis remains an ongoing challenge. This review consolidates recent progress in paclitaxel biosynthesis, highlighting current limitations and future prospects for industrial-scale production.
求助全文
约1分钟内获得全文 求助全文
来源期刊
Horticulture Research
Horticulture Research Biochemistry, Genetics and Molecular Biology-Biochemistry
CiteScore
11.20
自引率
6.90%
发文量
367
审稿时长
20 weeks
期刊介绍: Horticulture Research, an open access journal affiliated with Nanjing Agricultural University, has achieved the prestigious ranking of number one in the Horticulture category of the Journal Citation Reports ™ from Clarivate, 2022. As a leading publication in the field, the journal is dedicated to disseminating original research articles, comprehensive reviews, insightful perspectives, thought-provoking comments, and valuable correspondence articles and letters to the editor. Its scope encompasses all vital aspects of horticultural plants and disciplines, such as biotechnology, breeding, cellular and molecular biology, evolution, genetics, inter-species interactions, physiology, and the origination and domestication of crops.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信