Metabolomic and transcriptomic analyses provide insight into the variation of floral scent and molecular regulation in different cultivars and flower development of Curcuma alismatifolia
IF 8.7 1区 农林科学Q1 Agricultural and Biological Sciences
{"title":"Metabolomic and transcriptomic analyses provide insight into the variation of floral scent and molecular regulation in different cultivars and flower development of Curcuma alismatifolia","authors":"Chao Song, Jingpu Tian, Dejin Xie, Shengnan Lin, Yingxue Yang, Xiaoni Zhang, Xuezhu Liao, Zhiqiang Wu","doi":"10.1093/hr/uhae348","DOIUrl":null,"url":null,"abstract":"Curcuma alismatifolia is an important ornamental plant of significant economic value, while the floral fragrance has been rarely investigated, leading to a lack of knowledge about the floral scent. By performing metabolomic and transcriptomic analyses, we investigated the variation of 906 volatile organic compounds (VOCs) in florets of eight C. alismatifolia cultivars and four different developmental stages of ‘Chiang Mai Pink’ (CMP). The metabolite profiling revealed that the terpenoid group (213 out of 906) was the predominant VOC, accounting for 33.5% and 43.4% of total VOC contents in the florets of different cultivars and developmental stages, respectively. Sweet and woody were the predominant odors not only in different cultivars but also during developmental stages. The varied intensities of other odors contributed to forming odor diversities in C. alismatifolia floret. We uncovered seven terpenoid synthetase (TPS) genes and four MYB genes of significant association with the biosynthesis of terpenoids in eight cultivars and floret development, respectively. We performed an activity assay on four selected TPS genes and identified that Chr15HA1352 and Chr15HA2528 are responsible for the biosynthesis of α-farnesene. The significant association between the MYB gene (Chr03HA28) and seven terpenoids can be observed among different cultivars and during different developmental stages. These findings highlight the varying floral scents in different cultivars and floret development and suggest the potential roles of identified TPS and MYB genes in the biosynthesis of terpenoids in C. alismatifolia.","PeriodicalId":13179,"journal":{"name":"Horticulture Research","volume":"99 1","pages":""},"PeriodicalIF":8.7000,"publicationDate":"2024-12-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Horticulture Research","FirstCategoryId":"97","ListUrlMain":"https://doi.org/10.1093/hr/uhae348","RegionNum":1,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"Agricultural and Biological Sciences","Score":null,"Total":0}
引用次数: 0
Abstract
Curcuma alismatifolia is an important ornamental plant of significant economic value, while the floral fragrance has been rarely investigated, leading to a lack of knowledge about the floral scent. By performing metabolomic and transcriptomic analyses, we investigated the variation of 906 volatile organic compounds (VOCs) in florets of eight C. alismatifolia cultivars and four different developmental stages of ‘Chiang Mai Pink’ (CMP). The metabolite profiling revealed that the terpenoid group (213 out of 906) was the predominant VOC, accounting for 33.5% and 43.4% of total VOC contents in the florets of different cultivars and developmental stages, respectively. Sweet and woody were the predominant odors not only in different cultivars but also during developmental stages. The varied intensities of other odors contributed to forming odor diversities in C. alismatifolia floret. We uncovered seven terpenoid synthetase (TPS) genes and four MYB genes of significant association with the biosynthesis of terpenoids in eight cultivars and floret development, respectively. We performed an activity assay on four selected TPS genes and identified that Chr15HA1352 and Chr15HA2528 are responsible for the biosynthesis of α-farnesene. The significant association between the MYB gene (Chr03HA28) and seven terpenoids can be observed among different cultivars and during different developmental stages. These findings highlight the varying floral scents in different cultivars and floret development and suggest the potential roles of identified TPS and MYB genes in the biosynthesis of terpenoids in C. alismatifolia.
期刊介绍:
Horticulture Research, an open access journal affiliated with Nanjing Agricultural University, has achieved the prestigious ranking of number one in the Horticulture category of the Journal Citation Reports ™ from Clarivate, 2022. As a leading publication in the field, the journal is dedicated to disseminating original research articles, comprehensive reviews, insightful perspectives, thought-provoking comments, and valuable correspondence articles and letters to the editor. Its scope encompasses all vital aspects of horticultural plants and disciplines, such as biotechnology, breeding, cellular and molecular biology, evolution, genetics, inter-species interactions, physiology, and the origination and domestication of crops.