{"title":"Experimental and numerical investigations of cavity flame spread in double skin façade","authors":"Xukun Sun, Hideki Yoshioka, Takafumi Noguchi, Yuhei Nishio, Biao Zhou","doi":"10.1016/j.csite.2024.105607","DOIUrl":null,"url":null,"abstract":"In recent decades, double-skin façades (DSFs) have gained popularity in modern commercial buildings. However, their cavities can potentially accelerate flame spread, raising significant concerns regarding façade fire safety. Given that existing studies focus on the DSF component failures and fire stop measures without modeling validation, this study presents real-scale DSF fire experiments and modeling in accordance with JIS A 1310, conducted without combustibles to clarify fire behaviors within the cavity. The experiments employ HRRs of 600–900 kW and cavity depths of 0.4 and 0.8 m, highlighting that flame attachment to the facing wall is dependent on HRRs rather than cavity depths. Subsequently, Computational Fluid Dynamics (CFD) is utilized to investigate DSF fires, with validation against experimental temperature distribution and flame morphology. Furthermore, the validated CFD modeling is applied to scenarios with extended cavity depths and varied opening shapes, indicating that a cavity depth of ≥0.7 m mitigates flame spread for an opening ratio of n ≥ 1. The Modified-McCaffrey-Yokoi (MMY) model is proposed to characterize façade flame temperatures across varied cavity depths, and its convergence, featured by opening shapes and HRRs, is categorized to distinguish cavity flame behavior.","PeriodicalId":9658,"journal":{"name":"Case Studies in Thermal Engineering","volume":"10 1","pages":""},"PeriodicalIF":6.4000,"publicationDate":"2024-12-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Case Studies in Thermal Engineering","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1016/j.csite.2024.105607","RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"THERMODYNAMICS","Score":null,"Total":0}
引用次数: 0
Abstract
In recent decades, double-skin façades (DSFs) have gained popularity in modern commercial buildings. However, their cavities can potentially accelerate flame spread, raising significant concerns regarding façade fire safety. Given that existing studies focus on the DSF component failures and fire stop measures without modeling validation, this study presents real-scale DSF fire experiments and modeling in accordance with JIS A 1310, conducted without combustibles to clarify fire behaviors within the cavity. The experiments employ HRRs of 600–900 kW and cavity depths of 0.4 and 0.8 m, highlighting that flame attachment to the facing wall is dependent on HRRs rather than cavity depths. Subsequently, Computational Fluid Dynamics (CFD) is utilized to investigate DSF fires, with validation against experimental temperature distribution and flame morphology. Furthermore, the validated CFD modeling is applied to scenarios with extended cavity depths and varied opening shapes, indicating that a cavity depth of ≥0.7 m mitigates flame spread for an opening ratio of n ≥ 1. The Modified-McCaffrey-Yokoi (MMY) model is proposed to characterize façade flame temperatures across varied cavity depths, and its convergence, featured by opening shapes and HRRs, is categorized to distinguish cavity flame behavior.
期刊介绍:
Case Studies in Thermal Engineering provides a forum for the rapid publication of short, structured Case Studies in Thermal Engineering and related Short Communications. It provides an essential compendium of case studies for researchers and practitioners in the field of thermal engineering and others who are interested in aspects of thermal engineering cases that could affect other engineering processes. The journal not only publishes new and novel case studies, but also provides a forum for the publication of high quality descriptions of classic thermal engineering problems. The scope of the journal includes case studies of thermal engineering problems in components, devices and systems using existing experimental and numerical techniques in the areas of mechanical, aerospace, chemical, medical, thermal management for electronics, heat exchangers, regeneration, solar thermal energy, thermal storage, building energy conservation, and power generation. Case studies of thermal problems in other areas will also be considered.