Rapidly Generated, Ultra‐Stable, and Switchable Photoinduced Radicals: A Solid‐State Photochromic Paradigm for Reusable Paper Light‐Writing

IF 16.1 1区 化学 Q1 CHEMISTRY, MULTIDISCIPLINARY
Xiaoyan Xu, Ihor Sahalianov, Hao Sun, Zhongyu Li, Shengliang Wu, Boru Jiang, Hans Ågren, Glib V. Baryshnikov, Man Zhang, Liangliang Zhu
{"title":"Rapidly Generated, Ultra‐Stable, and Switchable Photoinduced Radicals: A Solid‐State Photochromic Paradigm for Reusable Paper Light‐Writing","authors":"Xiaoyan Xu, Ihor Sahalianov, Hao Sun, Zhongyu Li, Shengliang Wu, Boru Jiang, Hans Ågren, Glib V. Baryshnikov, Man Zhang, Liangliang Zhu","doi":"10.1002/anie.202422856","DOIUrl":null,"url":null,"abstract":"Although photochromic molecules have attracted widespread interest in various fields, solid‐state photochromism remains a formidable challenge, owing to the substantial conformational constraints that hinder traditional molecular photoisomerization processes. Benefiting from the significant color change upon radical generation, chemical systems enabling a photoinduced radical (PIR) behavior through photoinduced electron transfer (PET) could be ideal candidates for solid‐state photochromism within minimized need of conformational freedom. However, the transient nature of radicals causes a dilemma in this scheme. Herein, we present a general crystal engineering strategy for rapidly generated (7‐s irradiation to saturation) and ultra‐stable (lasting 12 weeks) PIRs in the solid state, based on the anti‐parallel alignment of para‐hydroxyphenyl groups of persulfurated arenes to form a strong non‐covalent network for efficient PET and radical stabilization. Using this strategy, a PIR platform was constructed, with a superior photochromic behavior remaining in different solid forms (even in the fully‐ground sample) due to their transcendent crystallization ability. On this basis, our compounds can be further processed into reusable papers for light‐writing, accompanied by water fumigation for modulating the reversible process. This work provides new insights into addressing solid‐state photochromism and can inspire a wide range of optical material design from the switchable radical perspective.","PeriodicalId":125,"journal":{"name":"Angewandte Chemie International Edition","volume":"93 1","pages":""},"PeriodicalIF":16.1000,"publicationDate":"2024-12-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Angewandte Chemie International Edition","FirstCategoryId":"92","ListUrlMain":"https://doi.org/10.1002/anie.202422856","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

Abstract

Although photochromic molecules have attracted widespread interest in various fields, solid‐state photochromism remains a formidable challenge, owing to the substantial conformational constraints that hinder traditional molecular photoisomerization processes. Benefiting from the significant color change upon radical generation, chemical systems enabling a photoinduced radical (PIR) behavior through photoinduced electron transfer (PET) could be ideal candidates for solid‐state photochromism within minimized need of conformational freedom. However, the transient nature of radicals causes a dilemma in this scheme. Herein, we present a general crystal engineering strategy for rapidly generated (7‐s irradiation to saturation) and ultra‐stable (lasting 12 weeks) PIRs in the solid state, based on the anti‐parallel alignment of para‐hydroxyphenyl groups of persulfurated arenes to form a strong non‐covalent network for efficient PET and radical stabilization. Using this strategy, a PIR platform was constructed, with a superior photochromic behavior remaining in different solid forms (even in the fully‐ground sample) due to their transcendent crystallization ability. On this basis, our compounds can be further processed into reusable papers for light‐writing, accompanied by water fumigation for modulating the reversible process. This work provides new insights into addressing solid‐state photochromism and can inspire a wide range of optical material design from the switchable radical perspective.
快速生成、超稳定、可切换的光诱导自由基:可重复使用的纸质光书写的固态光致变色范例
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
26.60
自引率
6.60%
发文量
3549
审稿时长
1.5 months
期刊介绍: Angewandte Chemie, a journal of the German Chemical Society (GDCh), maintains a leading position among scholarly journals in general chemistry with an impressive Impact Factor of 16.6 (2022 Journal Citation Reports, Clarivate, 2023). Published weekly in a reader-friendly format, it features new articles almost every day. Established in 1887, Angewandte Chemie is a prominent chemistry journal, offering a dynamic blend of Review-type articles, Highlights, Communications, and Research Articles on a weekly basis, making it unique in the field.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信