Efficient circular RNA synthesis for potent rolling circle translation

IF 26.8 1区 医学 Q1 ENGINEERING, BIOMEDICAL
Yifei Du, Philipp Konrad Zuber, Huajuan Xiao, Xueyan Li, Yuliya Gordiyenko, V. Ramakrishnan
{"title":"Efficient circular RNA synthesis for potent rolling circle translation","authors":"Yifei Du, Philipp Konrad Zuber, Huajuan Xiao, Xueyan Li, Yuliya Gordiyenko, V. Ramakrishnan","doi":"10.1038/s41551-024-01306-3","DOIUrl":null,"url":null,"abstract":"<p>Circular RNA (circRNA) is a candidate for next-generation messenger RNA therapeutics owing to its remarkable stability. Here we describe <i>trans</i>-splicing-based methods for the synthesis of circRNAs over 8,000 nucleotides. The methods are independent of bacterial sequences, outperform the permuted intron–exon method and allow for the incorporation of RNA modifications. The resulting unmodified circRNAs, which incorporate sequences from human 28S ribosomal RNA, display low immunogenicity and are translated more efficiently than permuted intron–exon-derived circRNAs. Additionally, by using viral internal ribosomal entry sites for rolling circle translation, we show that ribosomes can efficiently read through highly structured internal ribosomal entry sites, enhancing the efficiency of rolling circle translation by over 7,000-fold with respect to previous constructs. The efficient and reliable production of circRNA may facilitate its therapeutic use.</p>","PeriodicalId":19063,"journal":{"name":"Nature Biomedical Engineering","volume":"29 1","pages":""},"PeriodicalIF":26.8000,"publicationDate":"2024-12-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Nature Biomedical Engineering","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1038/s41551-024-01306-3","RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, BIOMEDICAL","Score":null,"Total":0}
引用次数: 0

Abstract

Circular RNA (circRNA) is a candidate for next-generation messenger RNA therapeutics owing to its remarkable stability. Here we describe trans-splicing-based methods for the synthesis of circRNAs over 8,000 nucleotides. The methods are independent of bacterial sequences, outperform the permuted intron–exon method and allow for the incorporation of RNA modifications. The resulting unmodified circRNAs, which incorporate sequences from human 28S ribosomal RNA, display low immunogenicity and are translated more efficiently than permuted intron–exon-derived circRNAs. Additionally, by using viral internal ribosomal entry sites for rolling circle translation, we show that ribosomes can efficiently read through highly structured internal ribosomal entry sites, enhancing the efficiency of rolling circle translation by over 7,000-fold with respect to previous constructs. The efficient and reliable production of circRNA may facilitate its therapeutic use.

Abstract Image

求助全文
约1分钟内获得全文 求助全文
来源期刊
Nature Biomedical Engineering
Nature Biomedical Engineering Medicine-Medicine (miscellaneous)
CiteScore
45.30
自引率
1.10%
发文量
138
期刊介绍: Nature Biomedical Engineering is an online-only monthly journal that was launched in January 2017. It aims to publish original research, reviews, and commentary focusing on applied biomedicine and health technology. The journal targets a diverse audience, including life scientists who are involved in developing experimental or computational systems and methods to enhance our understanding of human physiology. It also covers biomedical researchers and engineers who are engaged in designing or optimizing therapies, assays, devices, or procedures for diagnosing or treating diseases. Additionally, clinicians, who make use of research outputs to evaluate patient health or administer therapy in various clinical settings and healthcare contexts, are also part of the target audience.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信