Highly efficient removal of Pb2+ from aqueous solution using polyaniline-cobalt composite nanorods: Kinetics, isotherm and mechanistic investigation.

Madhumita Bhaumik, Arjun Maity, H G Brink
{"title":"Highly efficient removal of Pb<sup>2+</sup> from aqueous solution using polyaniline-cobalt composite nanorods: Kinetics, isotherm and mechanistic investigation.","authors":"Madhumita Bhaumik, Arjun Maity, H G Brink","doi":"10.1016/j.chemosphere.2024.143929","DOIUrl":null,"url":null,"abstract":"<p><p>Nanosized cobalt (Co) particles exhibit unique chemical, magnetic, electronic, and catalytic properties. Like nanoscale metallic iron, nanostructured Co and its composite nanostructures also show significant potential for the removal of toxic metal cations from water and wastewater. To explore this potential, composite nanorods (CNRs) of nanosized Co immobilized polyaniline (PANI) nanorods (NRs) matrix (PANI-Co CNRs) were synthesized and effectively applied for the treatment of lead ions (Pb<sup>2</sup>⁺), serving as a model for heavy metal pollutants in water bodies. Physico-chemical characterization of PANI-Co CNRs revealed that weak ferromagnetic Co nanoparticles (NPs) were effectively deposited onto the surface of the PANI NRs. The enhanced surface properties and superior reactivity of PANI-Co CNRs resulted in greater Pb<sup>2</sup><sup>+</sup> removal efficiency compared to their individual components. The adsorption kinetics were notably rapid, with the time required to reach equilibrium varying between 60 and 150 min for initial concentrations ranging from 50 to 150 mg/L, all at a pH of 5.0. The isotherm data revealed an impressive Pb<sup>2+</sup> adsorption capacity of 1130 mg/g at 25 °C, as determined using the non-linear Langmuir model. Exothermic and spontaneous Pb<sup>2+</sup> removal process was deduced from the thermodynamic investigations. Among co-contaminating metal ions, only Cu<sup>2+</sup> ions significantly affected the Pb<sup>2+</sup> removal performance of the PANI-Co CNRs, implying its possible applications in decontaminating industrial effluent laden with various metal ions. Mechanistic investigation revealed that the treatment process primarily involves the adsorption and precipitation of Pb<sup>2+</sup> onto the surface of PANI-Co CNRs, followed by its subsequent reduction to form metallic Pb (Pb<sup>0</sup>).</p>","PeriodicalId":93933,"journal":{"name":"Chemosphere","volume":" ","pages":"143929"},"PeriodicalIF":0.0000,"publicationDate":"2024-12-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Chemosphere","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1016/j.chemosphere.2024.143929","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Nanosized cobalt (Co) particles exhibit unique chemical, magnetic, electronic, and catalytic properties. Like nanoscale metallic iron, nanostructured Co and its composite nanostructures also show significant potential for the removal of toxic metal cations from water and wastewater. To explore this potential, composite nanorods (CNRs) of nanosized Co immobilized polyaniline (PANI) nanorods (NRs) matrix (PANI-Co CNRs) were synthesized and effectively applied for the treatment of lead ions (Pb2⁺), serving as a model for heavy metal pollutants in water bodies. Physico-chemical characterization of PANI-Co CNRs revealed that weak ferromagnetic Co nanoparticles (NPs) were effectively deposited onto the surface of the PANI NRs. The enhanced surface properties and superior reactivity of PANI-Co CNRs resulted in greater Pb2+ removal efficiency compared to their individual components. The adsorption kinetics were notably rapid, with the time required to reach equilibrium varying between 60 and 150 min for initial concentrations ranging from 50 to 150 mg/L, all at a pH of 5.0. The isotherm data revealed an impressive Pb2+ adsorption capacity of 1130 mg/g at 25 °C, as determined using the non-linear Langmuir model. Exothermic and spontaneous Pb2+ removal process was deduced from the thermodynamic investigations. Among co-contaminating metal ions, only Cu2+ ions significantly affected the Pb2+ removal performance of the PANI-Co CNRs, implying its possible applications in decontaminating industrial effluent laden with various metal ions. Mechanistic investigation revealed that the treatment process primarily involves the adsorption and precipitation of Pb2+ onto the surface of PANI-Co CNRs, followed by its subsequent reduction to form metallic Pb (Pb0).

求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信