{"title":"Recent advancements in the synthesis of anion exchange membranes and their potential applications in wastewater treatment.","authors":"Gurkaran Singh, Gaurav Yadav, Nidhi Yadav, Sahil Kapoor, Bunty Sharma, Ramesh Kumar Sharma, Rajeev Kumar, Ganga Ram Chaudhary","doi":"10.1016/j.cis.2024.103376","DOIUrl":null,"url":null,"abstract":"<p><p>Water treatment procedures are increasingly utilized for resource recovery and wastewater disinfection, addressing the current challenges of clean water depletion and wastewater management. Various pollutants, including dyes, acids, pharmaceuticals, and toxic heavy metals have been released into the environment through industrial, domestic, and agricultural activities, posing serious environmental and public health risks. Addressing these issues requires the development of more effective waste treatment processes. Membrane-based treatment technologies offer significant advantages, including high efficiency, versatility, and cost-effectiveness, making them a promising solution for mitigating the impact of these pollutants. In view of this, the potential of ion exchange membranes (IEMs) is continuously increasing due to their advanced characteristics compared to conventional techniques. Anion exchange membranes (AEMs), a special class of IEMs, selectively allow anions to pass through their pores due to the positive charge on their surface. This selective passage aids in resource recovery and removing specific types of pollutants. This review covers preparation methods, modification techniques, and classification of AEMs. It offers a practical classification based on the method of synthesis and structural properties of AEMs. The water-based applications of AEMs including, electrodialysis, diffusion dialysis, and electro-electrodialysis for various wastewater treatments such as heavy metal recovery, dye removal, pharmaceutical removal, and acid separation, have been discussed in detail. Additionally, the effect of various operational parameters on the performance and SWOT (strengths, weaknesses, opportunities, and threats) analysis of AEMs in effluent treatment are presented. The review provides detailed insights into the current status, challenges, and future directions of AEM-based technologies, offering suggestions for future advancements.</p>","PeriodicalId":93859,"journal":{"name":"Advances in colloid and interface science","volume":"336 ","pages":"103376"},"PeriodicalIF":0.0000,"publicationDate":"2024-12-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Advances in colloid and interface science","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1016/j.cis.2024.103376","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0
Abstract
Water treatment procedures are increasingly utilized for resource recovery and wastewater disinfection, addressing the current challenges of clean water depletion and wastewater management. Various pollutants, including dyes, acids, pharmaceuticals, and toxic heavy metals have been released into the environment through industrial, domestic, and agricultural activities, posing serious environmental and public health risks. Addressing these issues requires the development of more effective waste treatment processes. Membrane-based treatment technologies offer significant advantages, including high efficiency, versatility, and cost-effectiveness, making them a promising solution for mitigating the impact of these pollutants. In view of this, the potential of ion exchange membranes (IEMs) is continuously increasing due to their advanced characteristics compared to conventional techniques. Anion exchange membranes (AEMs), a special class of IEMs, selectively allow anions to pass through their pores due to the positive charge on their surface. This selective passage aids in resource recovery and removing specific types of pollutants. This review covers preparation methods, modification techniques, and classification of AEMs. It offers a practical classification based on the method of synthesis and structural properties of AEMs. The water-based applications of AEMs including, electrodialysis, diffusion dialysis, and electro-electrodialysis for various wastewater treatments such as heavy metal recovery, dye removal, pharmaceutical removal, and acid separation, have been discussed in detail. Additionally, the effect of various operational parameters on the performance and SWOT (strengths, weaknesses, opportunities, and threats) analysis of AEMs in effluent treatment are presented. The review provides detailed insights into the current status, challenges, and future directions of AEM-based technologies, offering suggestions for future advancements.