ViTBayesianNet: An adaptive deep bayesian network-aided alzheimer disease detection framework with vision transformer-based residual densenet for feature extraction using MRI images.

IF 1.1 3区 计算机科学 Q4 COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE
Revathi Mohan, Rajesh Arunachalam, Neha Verma, Shital Mali
{"title":"ViTBayesianNet: An adaptive deep bayesian network-aided alzheimer disease detection framework with vision transformer-based residual densenet for feature extraction using MRI images.","authors":"Revathi Mohan, Rajesh Arunachalam, Neha Verma, Shital Mali","doi":"10.1080/0954898X.2024.2435491","DOIUrl":null,"url":null,"abstract":"<p><p>One of the most familiar types of disease is Alzheimer's disease (AD) and it mainly impacts people over the age limit of 60. AD causes irreversible brain damage in humans. It is difficult to recognize the various stages of AD, hence advanced deep learning methods are suggested for recognizing AD in its initial stages. In this experiment, an effective deep model-based AD detection approach is introduced to provide effective treatment to the patient. Initially, an essential MRI is collected from the benchmark resources. After that, the gathered MRIs are provided as input to the feature extraction phase. Also, the important features in the input image are extracted by Vision Transformer-based Residual DenseNet (ViT-ResDenseNet). Later, the retrieved features are applied to the Alzheimer's detection stage. In this phase, AD is detected using an Adaptive Deep Bayesian Network (Ada-DBN). Additionally, the attributes of Ada-DBN are optimized with the help of Enhanced Golf Optimization Algorithm (EGOA). So, the implemented Alzheimer's detection model accomplishes relatively higher reliability than existing techniques. The numerical results of the suggested framework obtained an accuracy value of 96.35 which is greater than the 91.08, 91.95, and 93.95 attained by the EfficientNet-B2, TF- CNN, and ViT-GRU, respectively.</p>","PeriodicalId":54735,"journal":{"name":"Network-Computation in Neural Systems","volume":" ","pages":"1-41"},"PeriodicalIF":1.1000,"publicationDate":"2024-12-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Network-Computation in Neural Systems","FirstCategoryId":"94","ListUrlMain":"https://doi.org/10.1080/0954898X.2024.2435491","RegionNum":3,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE","Score":null,"Total":0}
引用次数: 0

Abstract

One of the most familiar types of disease is Alzheimer's disease (AD) and it mainly impacts people over the age limit of 60. AD causes irreversible brain damage in humans. It is difficult to recognize the various stages of AD, hence advanced deep learning methods are suggested for recognizing AD in its initial stages. In this experiment, an effective deep model-based AD detection approach is introduced to provide effective treatment to the patient. Initially, an essential MRI is collected from the benchmark resources. After that, the gathered MRIs are provided as input to the feature extraction phase. Also, the important features in the input image are extracted by Vision Transformer-based Residual DenseNet (ViT-ResDenseNet). Later, the retrieved features are applied to the Alzheimer's detection stage. In this phase, AD is detected using an Adaptive Deep Bayesian Network (Ada-DBN). Additionally, the attributes of Ada-DBN are optimized with the help of Enhanced Golf Optimization Algorithm (EGOA). So, the implemented Alzheimer's detection model accomplishes relatively higher reliability than existing techniques. The numerical results of the suggested framework obtained an accuracy value of 96.35 which is greater than the 91.08, 91.95, and 93.95 attained by the EfficientNet-B2, TF- CNN, and ViT-GRU, respectively.

ViTBayesianNet:一种自适应深度贝叶斯网络辅助的阿尔茨海默病检测框架,基于视觉变换的残差密度网,用于MRI图像的特征提取。
最常见的疾病之一是阿尔茨海默病(AD),它主要影响60岁以上的人群。阿尔茨海默病会对人类的大脑造成不可逆转的损伤。AD的各个阶段很难识别,因此建议采用先进的深度学习方法在AD的初始阶段进行识别。本实验引入了一种有效的基于深度模型的AD检测方法,为患者提供有效的治疗。最初,从基准资源中收集必要的MRI。之后,将收集到的mri作为特征提取阶段的输入。利用基于视觉变换的残差密度网(viti - resdensenet)提取输入图像中的重要特征。然后,将检索到的特征应用到阿尔茨海默病的检测阶段。在此阶段,使用自适应深度贝叶斯网络(Ada-DBN)检测AD。此外,利用增强高尔夫优化算法(Enhanced Golf Optimization Algorithm, EGOA)对Ada-DBN的属性进行了优化。因此,所实现的阿尔茨海默病检测模型比现有技术具有较高的可靠性。数值结果表明,该框架的准确率为96.35,高于EfficientNet-B2、TF- CNN和viti - gru的准确率91.08、91.95和93.95。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Network-Computation in Neural Systems
Network-Computation in Neural Systems 工程技术-工程:电子与电气
CiteScore
3.70
自引率
1.30%
发文量
22
审稿时长
>12 weeks
期刊介绍: Network: Computation in Neural Systems welcomes submissions of research papers that integrate theoretical neuroscience with experimental data, emphasizing the utilization of cutting-edge technologies. We invite authors and researchers to contribute their work in the following areas: Theoretical Neuroscience: This section encompasses neural network modeling approaches that elucidate brain function. Neural Networks in Data Analysis and Pattern Recognition: We encourage submissions exploring the use of neural networks for data analysis and pattern recognition, including but not limited to image analysis and speech processing applications. Neural Networks in Control Systems: This category encompasses the utilization of neural networks in control systems, including robotics, state estimation, fault detection, and diagnosis. Analysis of Neurophysiological Data: We invite submissions focusing on the analysis of neurophysiology data obtained from experimental studies involving animals. Analysis of Experimental Data on the Human Brain: This section includes papers analyzing experimental data from studies on the human brain, utilizing imaging techniques such as MRI, fMRI, EEG, and PET. Neurobiological Foundations of Consciousness: We encourage submissions exploring the neural bases of consciousness in the brain and its simulation in machines.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信