The mitochondrial membrane potential and the sources of reactive oxygen species in the hemocytes of the ark clam Anadara kagoshimensis under hypoosmotic stress.

IF 1.9 3区 生物学 Q4 BIOCHEMISTRY & MOLECULAR BIOLOGY
Daria S Lavrichenko, Elina S Chelebieva, Ekaterina S Kladchenko
{"title":"The mitochondrial membrane potential and the sources of reactive oxygen species in the hemocytes of the ark clam Anadara kagoshimensis under hypoosmotic stress.","authors":"Daria S Lavrichenko, Elina S Chelebieva, Ekaterina S Kladchenko","doi":"10.1016/j.cbpb.2024.111057","DOIUrl":null,"url":null,"abstract":"<p><p>To compensate for changes in cell volume caused by changes in salt concentration, mollusks use regulatory mechanisms such as the regulation of volume decrease (RVD). This may increase the rate of aerobic metabolism and lead to an increase in reactive oxygen species (ROS). This study examined the production of ROS in the mitochondria of Anadara kagoshiensis hemocytes, the effect of mitochondrial inhibitors on osmotic stability in hemocytes, and the dynamics of changes in ROS levels and mitochondrial membrane potential when RVD is activated under hypo-osmotic conditions. Hemocytes maintained at a control osmolarity of 460 mOsm l<sup>-1</sup> showed significant decreases in ROS production following incubation with complex III inhibitors (S3QEL). Hypoosmotic shock stimulated RVD in all experimental groups. The cell volume increased by about 70 % immediately after osmolarity was reduced, and then decreased by about 40 % over the next 30 min. A reduction in osmolarity from about 460 to 200 mOsm l<sup>-1</sup> significantly decreased ROS and mitochondrial potentials in A. kashimensis hemocyctes. Inhibitors of mitochondrial complexes did not affect changes in ROS or mitochondria potentials in A kashimiensis hemocytes under hypoosmotic conditions or in hemocyte volume regulation mechanisms.</p>","PeriodicalId":55236,"journal":{"name":"Comparative Biochemistry and Physiology B-Biochemistry & Molecular Biology","volume":" ","pages":"111057"},"PeriodicalIF":1.9000,"publicationDate":"2024-12-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Comparative Biochemistry and Physiology B-Biochemistry & Molecular Biology","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1016/j.cbpb.2024.111057","RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
引用次数: 0

Abstract

To compensate for changes in cell volume caused by changes in salt concentration, mollusks use regulatory mechanisms such as the regulation of volume decrease (RVD). This may increase the rate of aerobic metabolism and lead to an increase in reactive oxygen species (ROS). This study examined the production of ROS in the mitochondria of Anadara kagoshiensis hemocytes, the effect of mitochondrial inhibitors on osmotic stability in hemocytes, and the dynamics of changes in ROS levels and mitochondrial membrane potential when RVD is activated under hypo-osmotic conditions. Hemocytes maintained at a control osmolarity of 460 mOsm l-1 showed significant decreases in ROS production following incubation with complex III inhibitors (S3QEL). Hypoosmotic shock stimulated RVD in all experimental groups. The cell volume increased by about 70 % immediately after osmolarity was reduced, and then decreased by about 40 % over the next 30 min. A reduction in osmolarity from about 460 to 200 mOsm l-1 significantly decreased ROS and mitochondrial potentials in A. kashimensis hemocyctes. Inhibitors of mitochondrial complexes did not affect changes in ROS or mitochondria potentials in A kashimiensis hemocytes under hypoosmotic conditions or in hemocyte volume regulation mechanisms.

求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
4.60
自引率
4.50%
发文量
77
审稿时长
22 days
期刊介绍: Comparative Biochemistry & Physiology (CBP) publishes papers in comparative, environmental and evolutionary physiology. Part B: Biochemical and Molecular Biology (CBPB), focuses on biochemical physiology, primarily bioenergetics/energy metabolism, cell biology, cellular stress responses, enzymology, intermediary metabolism, macromolecular structure and function, gene regulation, evolutionary genetics. Most studies focus on biochemical or molecular analyses that have clear ramifications for physiological processes.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信