Evaluating the Influence of Morphological Features on the Vulnerability of Lipid-Rich Plaques During Stenting.

IF 1.7 4区 医学 Q4 BIOPHYSICS
Jose A Colmenarez, Pengfei Dong, Juhwan Lee, David L Wilson, Linxia Gu
{"title":"Evaluating the Influence of Morphological Features on the Vulnerability of Lipid-Rich Plaques During Stenting.","authors":"Jose A Colmenarez, Pengfei Dong, Juhwan Lee, David L Wilson, Linxia Gu","doi":"10.1115/1.4067398","DOIUrl":null,"url":null,"abstract":"<p><p>Lipid-rich atheromas are linked to plaque rupture in stented atherosclerotic arteries. While fibrous cap thickness is acknowledged as a critical indicator of vulnerability, it is likely that other morphological features also exert influence. However, detailed quantifications of their contributions and intertwined effects in stenting are lacking. Therefore, our goal is to assess the impact of plaque characteristics on the fibrous cap stress and elucidate their underlying mechanisms. We analyzed the stent deployment in a three-dimensional patient-specific coronary artery reconstructed from intravascular optical coherence tomography (IVOCT) data using the finite element method. Additionally, we performed sensitivity analysis on 78,000 distinct plaque geometries of two-dimensional arterial cross section for verification. Results from the three-dimensional patient-specific model indicate strong correlations between maximum fibrous cap stress and lipid arc (r=0.769), area stenosis (r=0.550), and lumen curvature (r=0.642). Plaques with lipid arcs >60 deg, area stenosis >75%, and lumen curvatures >5 mm-1 are at rupture risk. While we observed a rise in stress with thicker lipid cores, it was less representative than other features. Fibrous cap thickness showed a poor correlation, with the sensitivity analysis revealing its significance only when high stretches are induced by other features, likely due to its J-shaped stress-stretch response. Contrary to physiological pressure, the stent expansion generates unique vulnerable features as the stent load-transferring characteristics modify the plaque's response. This study is expected to prompt further clinical investigations of other morphological features for predicting plaque rupture in stenting.</p>","PeriodicalId":54871,"journal":{"name":"Journal of Biomechanical Engineering-Transactions of the Asme","volume":" ","pages":""},"PeriodicalIF":1.7000,"publicationDate":"2025-02-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Biomechanical Engineering-Transactions of the Asme","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1115/1.4067398","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"BIOPHYSICS","Score":null,"Total":0}
引用次数: 0

Abstract

Lipid-rich atheromas are linked to plaque rupture in stented atherosclerotic arteries. While fibrous cap thickness is acknowledged as a critical indicator of vulnerability, it is likely that other morphological features also exert influence. However, detailed quantifications of their contributions and intertwined effects in stenting are lacking. Therefore, our goal is to assess the impact of plaque characteristics on the fibrous cap stress and elucidate their underlying mechanisms. We analyzed the stent deployment in a three-dimensional patient-specific coronary artery reconstructed from intravascular optical coherence tomography (IVOCT) data using the finite element method. Additionally, we performed sensitivity analysis on 78,000 distinct plaque geometries of two-dimensional arterial cross section for verification. Results from the three-dimensional patient-specific model indicate strong correlations between maximum fibrous cap stress and lipid arc (r=0.769), area stenosis (r=0.550), and lumen curvature (r=0.642). Plaques with lipid arcs >60 deg, area stenosis >75%, and lumen curvatures >5 mm-1 are at rupture risk. While we observed a rise in stress with thicker lipid cores, it was less representative than other features. Fibrous cap thickness showed a poor correlation, with the sensitivity analysis revealing its significance only when high stretches are induced by other features, likely due to its J-shaped stress-stretch response. Contrary to physiological pressure, the stent expansion generates unique vulnerable features as the stent load-transferring characteristics modify the plaque's response. This study is expected to prompt further clinical investigations of other morphological features for predicting plaque rupture in stenting.

求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
3.40
自引率
5.90%
发文量
169
审稿时长
4-8 weeks
期刊介绍: Artificial Organs and Prostheses; Bioinstrumentation and Measurements; Bioheat Transfer; Biomaterials; Biomechanics; Bioprocess Engineering; Cellular Mechanics; Design and Control of Biological Systems; Physiological Systems.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信