Jose A Colmenarez, Pengfei Dong, Juhwan Lee, David L Wilson, Linxia Gu
{"title":"Evaluating the Influence of Morphological Features on the Vulnerability of Lipid-Rich Plaques During Stenting.","authors":"Jose A Colmenarez, Pengfei Dong, Juhwan Lee, David L Wilson, Linxia Gu","doi":"10.1115/1.4067398","DOIUrl":null,"url":null,"abstract":"<p><p>Lipid-rich atheromas are linked to plaque rupture in stented atherosclerotic arteries. While fibrous cap thickness is acknowledged as a critical indicator of vulnerability, it is likely that other morphological features also exert influence. However, detailed quantifications of their contributions and intertwined effects in stenting are lacking. Therefore, our goal is to assess the impact of plaque characteristics on the fibrous cap stress and elucidate their underlying mechanisms. We analyzed the stent deployment in a three-dimensional patient-specific coronary artery reconstructed from intravascular optical coherence tomography (IVOCT) data using the finite element method. Additionally, we performed sensitivity analysis on 78,000 distinct plaque geometries of two-dimensional arterial cross section for verification. Results from the three-dimensional patient-specific model indicate strong correlations between maximum fibrous cap stress and lipid arc (r=0.769), area stenosis (r=0.550), and lumen curvature (r=0.642). Plaques with lipid arcs >60 deg, area stenosis >75%, and lumen curvatures >5 mm-1 are at rupture risk. While we observed a rise in stress with thicker lipid cores, it was less representative than other features. Fibrous cap thickness showed a poor correlation, with the sensitivity analysis revealing its significance only when high stretches are induced by other features, likely due to its J-shaped stress-stretch response. Contrary to physiological pressure, the stent expansion generates unique vulnerable features as the stent load-transferring characteristics modify the plaque's response. This study is expected to prompt further clinical investigations of other morphological features for predicting plaque rupture in stenting.</p>","PeriodicalId":54871,"journal":{"name":"Journal of Biomechanical Engineering-Transactions of the Asme","volume":" ","pages":""},"PeriodicalIF":1.7000,"publicationDate":"2025-02-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Biomechanical Engineering-Transactions of the Asme","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1115/1.4067398","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"BIOPHYSICS","Score":null,"Total":0}
引用次数: 0
Abstract
Lipid-rich atheromas are linked to plaque rupture in stented atherosclerotic arteries. While fibrous cap thickness is acknowledged as a critical indicator of vulnerability, it is likely that other morphological features also exert influence. However, detailed quantifications of their contributions and intertwined effects in stenting are lacking. Therefore, our goal is to assess the impact of plaque characteristics on the fibrous cap stress and elucidate their underlying mechanisms. We analyzed the stent deployment in a three-dimensional patient-specific coronary artery reconstructed from intravascular optical coherence tomography (IVOCT) data using the finite element method. Additionally, we performed sensitivity analysis on 78,000 distinct plaque geometries of two-dimensional arterial cross section for verification. Results from the three-dimensional patient-specific model indicate strong correlations between maximum fibrous cap stress and lipid arc (r=0.769), area stenosis (r=0.550), and lumen curvature (r=0.642). Plaques with lipid arcs >60 deg, area stenosis >75%, and lumen curvatures >5 mm-1 are at rupture risk. While we observed a rise in stress with thicker lipid cores, it was less representative than other features. Fibrous cap thickness showed a poor correlation, with the sensitivity analysis revealing its significance only when high stretches are induced by other features, likely due to its J-shaped stress-stretch response. Contrary to physiological pressure, the stent expansion generates unique vulnerable features as the stent load-transferring characteristics modify the plaque's response. This study is expected to prompt further clinical investigations of other morphological features for predicting plaque rupture in stenting.
期刊介绍:
Artificial Organs and Prostheses; Bioinstrumentation and Measurements; Bioheat Transfer; Biomaterials; Biomechanics; Bioprocess Engineering; Cellular Mechanics; Design and Control of Biological Systems; Physiological Systems.