Controlled aggregative assembly to form self-organizing macroscopic human intestine from induced pluripotent stem cells.

IF 4.3 Q1 BIOCHEMICAL RESEARCH METHODS
Cell Reports Methods Pub Date : 2024-12-16 Epub Date: 2024-12-10 DOI:10.1016/j.crmeth.2024.100930
Junichi Takahashi, Hady Yuki Sugihara, Shu Kato, Sho Kawasaki, Sayaka Nagata, Ryuichi Okamoto, Tomohiro Mizutani
{"title":"Controlled aggregative assembly to form self-organizing macroscopic human intestine from induced pluripotent stem cells.","authors":"Junichi Takahashi, Hady Yuki Sugihara, Shu Kato, Sho Kawasaki, Sayaka Nagata, Ryuichi Okamoto, Tomohiro Mizutani","doi":"10.1016/j.crmeth.2024.100930","DOIUrl":null,"url":null,"abstract":"<p><p>Human intestinal organoids (HIOs) derived from human pluripotent stem cells (hPSCs) are promising resources for intestinal regenerative therapy as they recapitulate both endodermal and mesodermal components of the intestine. However, due to their hPSC-line-dependent mesenchymal development and spherical morphology, HIOs have limited applicability beyond basic research and development. Here, we demonstrate the incorporation of separately differentiated mesodermal and mid/hindgut cells into assembled spheroids to stabilize mesenchymal growth in HIOs. In parallel, we generate tubular intestinal constructs (assembled human intestinal tubules [a-HITs]) by leveraging the high aggregative property of assembled spheroids. Through rotational culture in a bioreactor, a-HITs self-organize to develop epithelium and supportive mesenchyme. Upon mesenteric transplantation, a-HITs mature into centimeter-scale tubular intestinal tissue with complex architectures. Our aggregation- and suspension-based approach offers basic technology for engineering tubular intestinal tissue from hPSCs, which could be ultimately applied to the generation of the human intestine for clinical application.</p>","PeriodicalId":29773,"journal":{"name":"Cell Reports Methods","volume":" ","pages":"100930"},"PeriodicalIF":4.3000,"publicationDate":"2024-12-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Cell Reports Methods","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1016/j.crmeth.2024.100930","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/12/10 0:00:00","PubModel":"Epub","JCR":"Q1","JCRName":"BIOCHEMICAL RESEARCH METHODS","Score":null,"Total":0}
引用次数: 0

Abstract

Human intestinal organoids (HIOs) derived from human pluripotent stem cells (hPSCs) are promising resources for intestinal regenerative therapy as they recapitulate both endodermal and mesodermal components of the intestine. However, due to their hPSC-line-dependent mesenchymal development and spherical morphology, HIOs have limited applicability beyond basic research and development. Here, we demonstrate the incorporation of separately differentiated mesodermal and mid/hindgut cells into assembled spheroids to stabilize mesenchymal growth in HIOs. In parallel, we generate tubular intestinal constructs (assembled human intestinal tubules [a-HITs]) by leveraging the high aggregative property of assembled spheroids. Through rotational culture in a bioreactor, a-HITs self-organize to develop epithelium and supportive mesenchyme. Upon mesenteric transplantation, a-HITs mature into centimeter-scale tubular intestinal tissue with complex architectures. Our aggregation- and suspension-based approach offers basic technology for engineering tubular intestinal tissue from hPSCs, which could be ultimately applied to the generation of the human intestine for clinical application.

求助全文
约1分钟内获得全文 求助全文
来源期刊
Cell Reports Methods
Cell Reports Methods Chemistry (General), Biochemistry, Genetics and Molecular Biology (General), Immunology and Microbiology (General)
CiteScore
3.80
自引率
0.00%
发文量
0
审稿时长
111 days
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信