Stavros A Theofanidis, Evangelos Delikonstantis, Vasileia-Loukia Yfanti, Vladimir V Galvita, Angeliki A Lemonidou, Kevin Van Geem
{"title":"An electricity-powered future for mixed plastic waste chemical recycling.","authors":"Stavros A Theofanidis, Evangelos Delikonstantis, Vasileia-Loukia Yfanti, Vladimir V Galvita, Angeliki A Lemonidou, Kevin Van Geem","doi":"10.1016/j.wasman.2024.12.003","DOIUrl":null,"url":null,"abstract":"<p><p>In contemporary times, global plastic waste production has doubled in comparison to two decades ago, with only 9% effectively recycled. The polymer industry is undergoing a transition to address the disparity between plastic production and end-of-life waste management. Chemical recycling offers a solution by converting plastic waste into its constituent building blocks, or monomers, which can be utilized in the production of new, high-quality plastics. This concise review provides an overview of conventional chemical recycling technologies employing heated reactors, before delving into ongoing efforts towards electrifying the chemical recycling process. A conceptual framework for a fully electrified value chain aimed at achieving plastics circularity is outlined and analyzed. Additionally, attention is given to the challenges posed by industry inertia towards adopting electrified technologies, as well as performance issues stemming from the intermittent nature of renewable energy sources and the availability of long-duration renewable electricity storage options.</p>","PeriodicalId":23969,"journal":{"name":"Waste management","volume":"193 ","pages":"155-170"},"PeriodicalIF":7.1000,"publicationDate":"2024-12-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Waste management","FirstCategoryId":"93","ListUrlMain":"https://doi.org/10.1016/j.wasman.2024.12.003","RegionNum":2,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, ENVIRONMENTAL","Score":null,"Total":0}
引用次数: 0
Abstract
In contemporary times, global plastic waste production has doubled in comparison to two decades ago, with only 9% effectively recycled. The polymer industry is undergoing a transition to address the disparity between plastic production and end-of-life waste management. Chemical recycling offers a solution by converting plastic waste into its constituent building blocks, or monomers, which can be utilized in the production of new, high-quality plastics. This concise review provides an overview of conventional chemical recycling technologies employing heated reactors, before delving into ongoing efforts towards electrifying the chemical recycling process. A conceptual framework for a fully electrified value chain aimed at achieving plastics circularity is outlined and analyzed. Additionally, attention is given to the challenges posed by industry inertia towards adopting electrified technologies, as well as performance issues stemming from the intermittent nature of renewable energy sources and the availability of long-duration renewable electricity storage options.
期刊介绍:
Waste Management is devoted to the presentation and discussion of information on solid wastes,it covers the entire lifecycle of solid. wastes.
Scope:
Addresses solid wastes in both industrialized and economically developing countries
Covers various types of solid wastes, including:
Municipal (e.g., residential, institutional, commercial, light industrial)
Agricultural
Special (e.g., C and D, healthcare, household hazardous wastes, sewage sludge)