Quantitative proteomics analysis of cerebrospinal fluid reveals putative protein biomarkers for canine non-infectious meningoencephalomyelitis.

IF 2.3 2区 农林科学 Q1 VETERINARY SCIENCES
M Aradillas-Pérez, E M Espinosa-López, B Ortiz-Guisado, E M Martín-Suárez, G Gómez-Baena, A Galán-Rodríguez
{"title":"Quantitative proteomics analysis of cerebrospinal fluid reveals putative protein biomarkers for canine non-infectious meningoencephalomyelitis.","authors":"M Aradillas-Pérez, E M Espinosa-López, B Ortiz-Guisado, E M Martín-Suárez, G Gómez-Baena, A Galán-Rodríguez","doi":"10.1016/j.tvjl.2024.106285","DOIUrl":null,"url":null,"abstract":"<p><p>Accurate ante-mortem diagnosis of non-infectious meningoencephalomyelitis (NIME) in dogs is challenging due to the similarity of clinical presentations, imaging findings, and cerebrospinal fluid (CSF) analysis results with other diseases. This study aimed to apply state-of-the-art quantitative proteomic technology to identify novel biomarkers for NIME. Serum and CSF samples from 11 dogs were included, with the control group consisting of patients presenting with intervertebral disc disease (IVDD, n = 6) and the study group consisting of dogs suffering from NIME (n = 5). Mass spectrometry-based quantitative proteomics revealed a set of 36 proteins with significant differential abundance in CSF samples. Up-regulated proteins in NIME CSF included immunoglobulins, inter-alpha-trypsin inhibitor heavy chain 2, acid sphingomyelinase-like phosphodiesterase, and chitinase 3-like protein 1, all associated with immune response and inflammation. Conversely, significantly down-regulated proteins included neural cell adhesion molecule, contactin-1, and procollagen C-endopeptidase enhancer, which are involved in neurodevelopment and synaptic plasticity. No differences in serum profiles were observed among the groups. This study identified a panel of CSF protein biomarker candidates for NIME and provided new insights into the pathogenesis of the disease, suggesting that neuronal dysfunction and immune dysregulation may be involved.</p>","PeriodicalId":23505,"journal":{"name":"Veterinary journal","volume":" ","pages":"106285"},"PeriodicalIF":2.3000,"publicationDate":"2024-12-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Veterinary journal","FirstCategoryId":"97","ListUrlMain":"https://doi.org/10.1016/j.tvjl.2024.106285","RegionNum":2,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"VETERINARY SCIENCES","Score":null,"Total":0}
引用次数: 0

Abstract

Accurate ante-mortem diagnosis of non-infectious meningoencephalomyelitis (NIME) in dogs is challenging due to the similarity of clinical presentations, imaging findings, and cerebrospinal fluid (CSF) analysis results with other diseases. This study aimed to apply state-of-the-art quantitative proteomic technology to identify novel biomarkers for NIME. Serum and CSF samples from 11 dogs were included, with the control group consisting of patients presenting with intervertebral disc disease (IVDD, n = 6) and the study group consisting of dogs suffering from NIME (n = 5). Mass spectrometry-based quantitative proteomics revealed a set of 36 proteins with significant differential abundance in CSF samples. Up-regulated proteins in NIME CSF included immunoglobulins, inter-alpha-trypsin inhibitor heavy chain 2, acid sphingomyelinase-like phosphodiesterase, and chitinase 3-like protein 1, all associated with immune response and inflammation. Conversely, significantly down-regulated proteins included neural cell adhesion molecule, contactin-1, and procollagen C-endopeptidase enhancer, which are involved in neurodevelopment and synaptic plasticity. No differences in serum profiles were observed among the groups. This study identified a panel of CSF protein biomarker candidates for NIME and provided new insights into the pathogenesis of the disease, suggesting that neuronal dysfunction and immune dysregulation may be involved.

求助全文
约1分钟内获得全文 求助全文
来源期刊
Veterinary journal
Veterinary journal 农林科学-兽医学
CiteScore
4.10
自引率
4.50%
发文量
79
审稿时长
40 days
期刊介绍: The Veterinary Journal (established 1875) publishes worldwide contributions on all aspects of veterinary science and its related subjects. It provides regular book reviews and a short communications section. The journal regularly commissions topical reviews and commentaries on features of major importance. Research areas include infectious diseases, applied biochemistry, parasitology, endocrinology, microbiology, immunology, pathology, pharmacology, physiology, molecular biology, immunogenetics, surgery, ophthalmology, dermatology and oncology.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信