Thomas Steger-Hartmann, Ferran Sanz, Frank Bringezu, Inari Soininen
{"title":"IHI VICT3R: Developing and Implementing Virtual Control Groups to Reduce Animal Use in Toxicology Research.","authors":"Thomas Steger-Hartmann, Ferran Sanz, Frank Bringezu, Inari Soininen","doi":"10.1177/01926233241303906","DOIUrl":null,"url":null,"abstract":"<p><p>The virtual control group (VCG) concept was originally developed in the IMI2 project eTRANSAFE, using data of control animals which pharmaceutical companies have accrued over decades from animal toxicity studies. This control data could be repurposed to create virtual control animals to reduce or replace concurrent controls in animal studies. Initial work demonstrated the general feasibility of the VCG concept, but implementation requires significant further collaborative efforts. The new Innovative Health Initiative (IHI) project VICT3R aims to address these challenges and to obtain regulatory acceptance for the VCG concept. To achieve these goals, VICT3R will build a database comprising high-quality, standardized, and duly annotated control animal data from past and forthcoming toxicity studies. The VICT3R project will create workflows and computational tools to generate adequate VCGs based on statistical and artificial intelligence (AI) approaches. The validity, reproducibility, and robustness of the resulting VCGs will be assessed by comparing the performance of their use with that of real control groups.</p>","PeriodicalId":23113,"journal":{"name":"Toxicologic Pathology","volume":" ","pages":"1926233241303906"},"PeriodicalIF":1.4000,"publicationDate":"2024-12-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Toxicologic Pathology","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1177/01926233241303906","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"PATHOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
The virtual control group (VCG) concept was originally developed in the IMI2 project eTRANSAFE, using data of control animals which pharmaceutical companies have accrued over decades from animal toxicity studies. This control data could be repurposed to create virtual control animals to reduce or replace concurrent controls in animal studies. Initial work demonstrated the general feasibility of the VCG concept, but implementation requires significant further collaborative efforts. The new Innovative Health Initiative (IHI) project VICT3R aims to address these challenges and to obtain regulatory acceptance for the VCG concept. To achieve these goals, VICT3R will build a database comprising high-quality, standardized, and duly annotated control animal data from past and forthcoming toxicity studies. The VICT3R project will create workflows and computational tools to generate adequate VCGs based on statistical and artificial intelligence (AI) approaches. The validity, reproducibility, and robustness of the resulting VCGs will be assessed by comparing the performance of their use with that of real control groups.
期刊介绍:
Toxicologic Pathology is dedicated to the promotion of human, animal, and environmental health through the dissemination of knowledge, techniques, and guidelines to enhance the understanding and practice of toxicologic pathology. Toxicologic Pathology, the official journal of the Society of Toxicologic Pathology, will publish Original Research Articles, Symposium Articles, Review Articles, Meeting Reports, New Techniques, and Position Papers that are relevant to toxicologic pathology.