{"title":"Raman microscopy of cryofixed biological specimens for high-resolution and high-sensitivity chemical imaging.","authors":"Kenta Mizushima, Yasuaki Kumamoto, Shoko Tamura, Masahito Yamanaka, Kentaro Mochizuki, Menglu Li, Syusuke Egoshi, Kosuke Dodo, Yoshinori Harada, Nicholas I Smith, Mikiko Sodeoka, Hideo Tanaka, Katsumasa Fujita","doi":"10.1126/sciadv.adn0110","DOIUrl":null,"url":null,"abstract":"<p><p>Raman microscopy is an emerging molecular imaging technology, yet its signal-to-noise ratio (SNR) in measurements of biological specimens is severely limited because of the small cross section of Raman scattering. Here, we present Raman imaging techniques of cryofixed specimens to overcome SNR limitations by enabling long exposure of specimens under highly stabilized low-temperature conditions. The observation of frozen specimens in a cryostat at a constant low temperature immediately after rapid freezing enabled the improvement of SNR and enhanced the spatial and spectral resolution. We also confirmed that the cryofixation can preserve physicochemical states of specimens by observing alkyne-labeled coenzyme Q in cytosol and hemeproteins in acute ischemic myocardium, which cannot be done by fixation using chemical reagents. Last, we applied the technique for multiplex Raman imaging of label-free endogenous molecules and alkyne-tagged molecules in cryofixed HeLa cells, demonstrating its capability of high-content imaging of complex biological phenomena while maintaining physiological conditions.</p>","PeriodicalId":21609,"journal":{"name":"Science Advances","volume":"10 50","pages":"eadn0110"},"PeriodicalIF":11.7000,"publicationDate":"2024-12-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11633761/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Science Advances","FirstCategoryId":"103","ListUrlMain":"https://doi.org/10.1126/sciadv.adn0110","RegionNum":1,"RegionCategory":"综合性期刊","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/12/11 0:00:00","PubModel":"Epub","JCR":"Q1","JCRName":"MULTIDISCIPLINARY SCIENCES","Score":null,"Total":0}
引用次数: 0
Abstract
Raman microscopy is an emerging molecular imaging technology, yet its signal-to-noise ratio (SNR) in measurements of biological specimens is severely limited because of the small cross section of Raman scattering. Here, we present Raman imaging techniques of cryofixed specimens to overcome SNR limitations by enabling long exposure of specimens under highly stabilized low-temperature conditions. The observation of frozen specimens in a cryostat at a constant low temperature immediately after rapid freezing enabled the improvement of SNR and enhanced the spatial and spectral resolution. We also confirmed that the cryofixation can preserve physicochemical states of specimens by observing alkyne-labeled coenzyme Q in cytosol and hemeproteins in acute ischemic myocardium, which cannot be done by fixation using chemical reagents. Last, we applied the technique for multiplex Raman imaging of label-free endogenous molecules and alkyne-tagged molecules in cryofixed HeLa cells, demonstrating its capability of high-content imaging of complex biological phenomena while maintaining physiological conditions.
期刊介绍:
Science Advances, an open-access journal by AAAS, publishes impactful research in diverse scientific areas. It aims for fair, fast, and expert peer review, providing freely accessible research to readers. Led by distinguished scientists, the journal supports AAAS's mission by extending Science magazine's capacity to identify and promote significant advances. Evolving digital publishing technologies play a crucial role in advancing AAAS's global mission for science communication and benefitting humankind.