Using Hierarchical Bayesian Modeling to Enhance Statistical Inference on Contrast Sensitivity.

IF 2.6 3区 医学 Q2 OPHTHALMOLOGY
Yukai Zhao, Luis Andres Lesmes, Michael Dorr, Zhong-Lin Lu
{"title":"Using Hierarchical Bayesian Modeling to Enhance Statistical Inference on Contrast Sensitivity.","authors":"Yukai Zhao, Luis Andres Lesmes, Michael Dorr, Zhong-Lin Lu","doi":"10.1167/tvst.13.12.17","DOIUrl":null,"url":null,"abstract":"<p><strong>Purpose: </strong>The purpose of this study is to introduce a nonparametric hierarchical Bayesian model (HBM) that enables advanced statistical inference on contrast sensitivity (CS) both at individual spatial frequencies (SFs) and across multiple SFs in clinical trials, where CS measurements are crucial for assessing safety and efficacy.</p><p><strong>Methods: </strong>The HBM computes the joint posterior distribution of CS at six Food and Drug Administration-designated SFs across the population, individual, and test levels. It incorporates covariances at both population and individual levels to capture the relationship between CSs across SFs. A Bayesian inference procedure (BIP) is also used to estimate the posterior distribution of CS at each SF independently. Both methods are applied to a quantitative CSF (qCSF) dataset of 112 subjects and compared in terms of precision, test-retest reliability of CS estimates, sensitivity, accuracy, and statistical power in detecting CS changes.</p><p><strong>Results: </strong>The HBM reveals correlations between CSs in pairs of SFs and provides significantly more precise estimates and higher test-retest reliability compared to the BIP. Additionally, it improves the average sensitivity and accuracy in detecting CS changes for individual subjects, as well as statistical power for detecting group-level CS changes at individual and combinations of multiple SFs between luminance conditions.</p><p><strong>Conclusions: </strong>The HBM establishes a comprehensive framework to enhance sensitivity, accuracy, and statistical power for detecting CS changes in hierarchical experimental designs.</p><p><strong>Translational relevance: </strong>The HBM presents a valuable tool for advancing CS assessments in the clinic and clinical trials, potentially improving the evaluation of treatment efficacy and patient outcomes.</p>","PeriodicalId":23322,"journal":{"name":"Translational Vision Science & Technology","volume":"13 12","pages":"17"},"PeriodicalIF":2.6000,"publicationDate":"2024-12-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11645744/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Translational Vision Science & Technology","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1167/tvst.13.12.17","RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"OPHTHALMOLOGY","Score":null,"Total":0}
引用次数: 0

Abstract

Purpose: The purpose of this study is to introduce a nonparametric hierarchical Bayesian model (HBM) that enables advanced statistical inference on contrast sensitivity (CS) both at individual spatial frequencies (SFs) and across multiple SFs in clinical trials, where CS measurements are crucial for assessing safety and efficacy.

Methods: The HBM computes the joint posterior distribution of CS at six Food and Drug Administration-designated SFs across the population, individual, and test levels. It incorporates covariances at both population and individual levels to capture the relationship between CSs across SFs. A Bayesian inference procedure (BIP) is also used to estimate the posterior distribution of CS at each SF independently. Both methods are applied to a quantitative CSF (qCSF) dataset of 112 subjects and compared in terms of precision, test-retest reliability of CS estimates, sensitivity, accuracy, and statistical power in detecting CS changes.

Results: The HBM reveals correlations between CSs in pairs of SFs and provides significantly more precise estimates and higher test-retest reliability compared to the BIP. Additionally, it improves the average sensitivity and accuracy in detecting CS changes for individual subjects, as well as statistical power for detecting group-level CS changes at individual and combinations of multiple SFs between luminance conditions.

Conclusions: The HBM establishes a comprehensive framework to enhance sensitivity, accuracy, and statistical power for detecting CS changes in hierarchical experimental designs.

Translational relevance: The HBM presents a valuable tool for advancing CS assessments in the clinic and clinical trials, potentially improving the evaluation of treatment efficacy and patient outcomes.

求助全文
约1分钟内获得全文 求助全文
来源期刊
Translational Vision Science & Technology
Translational Vision Science & Technology Engineering-Biomedical Engineering
CiteScore
5.70
自引率
3.30%
发文量
346
审稿时长
25 weeks
期刊介绍: Translational Vision Science & Technology (TVST), an official journal of the Association for Research in Vision and Ophthalmology (ARVO), an international organization whose purpose is to advance research worldwide into understanding the visual system and preventing, treating and curing its disorders, is an online, open access, peer-reviewed journal emphasizing multidisciplinary research that bridges the gap between basic research and clinical care. A highly qualified and diverse group of Associate Editors and Editorial Board Members is led by Editor-in-Chief Marco Zarbin, MD, PhD, FARVO. The journal covers a broad spectrum of work, including but not limited to: Applications of stem cell technology for regenerative medicine, Development of new animal models of human diseases, Tissue bioengineering, Chemical engineering to improve virus-based gene delivery, Nanotechnology for drug delivery, Design and synthesis of artificial extracellular matrices, Development of a true microsurgical operating environment, Refining data analysis algorithms to improve in vivo imaging technology, Results of Phase 1 clinical trials, Reverse translational ("bedside to bench") research. TVST seeks manuscripts from scientists and clinicians with diverse backgrounds ranging from basic chemistry to ophthalmic surgery that will advance or change the way we understand and/or treat vision-threatening diseases. TVST encourages the use of color, multimedia, hyperlinks, program code and other digital enhancements.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信