Valeria Tarmati, Andrea Sepe, Alessandra Accoto, David Conversi, Daniela Laricchiuta, Anna Panuccio, Sonia Canterini, Maria Teresa Fiorenza, Simona Cabib, Cristina Orsini
{"title":"Genotype-dependent functional role of the anterior and posterior paraventricular thalamus in pavlovian conditioned approach.","authors":"Valeria Tarmati, Andrea Sepe, Alessandra Accoto, David Conversi, Daniela Laricchiuta, Anna Panuccio, Sonia Canterini, Maria Teresa Fiorenza, Simona Cabib, Cristina Orsini","doi":"10.1007/s00213-024-06726-2","DOIUrl":null,"url":null,"abstract":"<p><strong>Rationale: </strong>The specific location of deviations from normative models of brain function varies considerably across individuals with the same diagnoses. However, as pathological processes are distributed across interconnected systems, this heterogeneity of individual brain deviations may also reveal similarities and differences between disorders. The paraventricular nucleus of the thalamus (PVT) is a potential switcher to various behavioral responses where functionally distinct cell types exist across its antero-posterior axis.</p><p><strong>Objectives: </strong>This study aimed to test the hypothesis that genotype-dependent differences in the anterior and posterior PVT subregions (aPVT and pPVT) are involved in the Sign-tracking (ST) behavior expressed by C57BL/6J (C57) and DBA/2J (DBA) inbred mice.</p><p><strong>Methods: </strong>Based on previous findings, male mice of the two strains were tested at ten weeks of age. The density of c-Fos immunoreactivity along the antero-posterior axis of PVT was assessed following the expression of ST behavior. Selective excitotoxic lesions of the aPVT or the pPVT by the NMDA infusion were performed prior to development of ST behavior. Finally, the distribution of neuronal populations expressing the Drd2 and Gal genes (D2R + and Gal +) was measured by in situ hybridization (ISH).</p><p><strong>Results: </strong>The involvement of PVT subregions in ST behavior is strain-specific, as aPVT is crucial for ST acquisition in DBA mice while pPVT is crucial for C57 mice. Despite similar antero-posterior distribution of D2R + and Gal + neurons, density of D2R + neurons differentiate aPVT in C57 and DBA mice.</p><p><strong>Conclusions: </strong>These genotype-dependent results offer valuable insights into the nuanced organization of brain networks and individual variability in behavioral responses.</p>","PeriodicalId":20783,"journal":{"name":"Psychopharmacology","volume":" ","pages":""},"PeriodicalIF":3.5000,"publicationDate":"2024-12-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Psychopharmacology","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1007/s00213-024-06726-2","RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"NEUROSCIENCES","Score":null,"Total":0}
引用次数: 0
Abstract
Rationale: The specific location of deviations from normative models of brain function varies considerably across individuals with the same diagnoses. However, as pathological processes are distributed across interconnected systems, this heterogeneity of individual brain deviations may also reveal similarities and differences between disorders. The paraventricular nucleus of the thalamus (PVT) is a potential switcher to various behavioral responses where functionally distinct cell types exist across its antero-posterior axis.
Objectives: This study aimed to test the hypothesis that genotype-dependent differences in the anterior and posterior PVT subregions (aPVT and pPVT) are involved in the Sign-tracking (ST) behavior expressed by C57BL/6J (C57) and DBA/2J (DBA) inbred mice.
Methods: Based on previous findings, male mice of the two strains were tested at ten weeks of age. The density of c-Fos immunoreactivity along the antero-posterior axis of PVT was assessed following the expression of ST behavior. Selective excitotoxic lesions of the aPVT or the pPVT by the NMDA infusion were performed prior to development of ST behavior. Finally, the distribution of neuronal populations expressing the Drd2 and Gal genes (D2R + and Gal +) was measured by in situ hybridization (ISH).
Results: The involvement of PVT subregions in ST behavior is strain-specific, as aPVT is crucial for ST acquisition in DBA mice while pPVT is crucial for C57 mice. Despite similar antero-posterior distribution of D2R + and Gal + neurons, density of D2R + neurons differentiate aPVT in C57 and DBA mice.
Conclusions: These genotype-dependent results offer valuable insights into the nuanced organization of brain networks and individual variability in behavioral responses.
期刊介绍:
Official Journal of the European Behavioural Pharmacology Society (EBPS)
Psychopharmacology is an international journal that covers the broad topic of elucidating mechanisms by which drugs affect behavior. The scope of the journal encompasses the following fields:
Human Psychopharmacology: Experimental
This section includes manuscripts describing the effects of drugs on mood, behavior, cognition and physiology in humans. The journal encourages submissions that involve brain imaging, genetics, neuroendocrinology, and developmental topics. Usually manuscripts in this section describe studies conducted under controlled conditions, but occasionally descriptive or observational studies are also considered.
Human Psychopharmacology: Clinical and Translational
This section comprises studies addressing the broad intersection of drugs and psychiatric illness. This includes not only clinical trials and studies of drug usage and metabolism, drug surveillance, and pharmacoepidemiology, but also work utilizing the entire range of clinically relevant methodologies, including neuroimaging, pharmacogenetics, cognitive science, biomarkers, and others. Work directed toward the translation of preclinical to clinical knowledge is especially encouraged. The key feature of submissions to this section is that they involve a focus on clinical aspects.
Preclinical psychopharmacology: Behavioral and Neural
This section considers reports on the effects of compounds with defined chemical structures on any aspect of behavior, in particular when correlated with neurochemical effects, in species other than humans. Manuscripts containing neuroscientific techniques in combination with behavior are welcome. We encourage reports of studies that provide insight into the mechanisms of drug action, at the behavioral and molecular levels.
Preclinical Psychopharmacology: Translational
This section considers manuscripts that enhance the confidence in a central mechanism that could be of therapeutic value for psychiatric or neurological patients, using disease-relevant preclinical models and tests, or that report on preclinical manipulations and challenges that have the potential to be translated to the clinic. Studies aiming at the refinement of preclinical models based upon clinical findings (back-translation) will also be considered. The journal particularly encourages submissions that integrate measures of target tissue exposure, activity on the molecular target and/or modulation of the targeted biochemical pathways.
Preclinical Psychopharmacology: Molecular, Genetic and Epigenetic
This section focuses on the molecular and cellular actions of neuropharmacological agents / drugs, and the identification / validation of drug targets affecting the CNS in health and disease. We particularly encourage studies that provide insight into the mechanisms of drug action at the molecular level. Manuscripts containing evidence for genetic or epigenetic effects on neurochemistry or behavior are welcome.