{"title":"Characterization of beta2-adrenergic receptor knockout mouse model during Chlamydia muridarum genital infection.","authors":"Tesfaye Belay, Rajnish Sahu, Vida Dennis, Kaitlyn Cook, Alexis Ray, Danielle Baker, Ashlei Kelly, Nathasha Woart","doi":"10.1093/femspd/ftae029","DOIUrl":null,"url":null,"abstract":"<p><p>Chlamydia genital infection caused by Chlamydia trachomatis is the most common bacterial sexually transmitted disease worldwide. A mouse model has been developed in our laboratory to better understand the effect of cold-induced stress on chlamydia genital infection and immune response. However, the stress mechanism affecting the host response to Chlamydia muridarum genital infection remains unclear. Here, we demonstrate a role for the beta2-adrenergic receptor (β2-AR), which binds noradrenaline and modulates the immune response against chlamydia genital infection in a mouse model. A successful β2-AR homozygous knockout (KO) mouse model was used to study the infection and analyze the immune response. Our data show that stressed mice lacking the β2-AR are less susceptible to C. muridarum genital infection than controls. A correlation was obtained between lower organ load and higher interferon-gamma production by CD4+ and CD8+ cells of the KO mice. Furthermore, exposure of CD4+ T cells to noradrenaline alters the production of cytokines in mice during C. muridarum genital infection. This study suggests that the blockade of β2-AR signaling could be used to increase resistance to chlamydia genital infection. We value the β2-AR KO as a viable model that can provide reproducible results in investigating medical research, including chlamydia genital infection.</p>","PeriodicalId":19795,"journal":{"name":"Pathogens and disease","volume":" ","pages":""},"PeriodicalIF":2.7000,"publicationDate":"2024-02-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11645100/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Pathogens and disease","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1093/femspd/ftae029","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"IMMUNOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
Chlamydia genital infection caused by Chlamydia trachomatis is the most common bacterial sexually transmitted disease worldwide. A mouse model has been developed in our laboratory to better understand the effect of cold-induced stress on chlamydia genital infection and immune response. However, the stress mechanism affecting the host response to Chlamydia muridarum genital infection remains unclear. Here, we demonstrate a role for the beta2-adrenergic receptor (β2-AR), which binds noradrenaline and modulates the immune response against chlamydia genital infection in a mouse model. A successful β2-AR homozygous knockout (KO) mouse model was used to study the infection and analyze the immune response. Our data show that stressed mice lacking the β2-AR are less susceptible to C. muridarum genital infection than controls. A correlation was obtained between lower organ load and higher interferon-gamma production by CD4+ and CD8+ cells of the KO mice. Furthermore, exposure of CD4+ T cells to noradrenaline alters the production of cytokines in mice during C. muridarum genital infection. This study suggests that the blockade of β2-AR signaling could be used to increase resistance to chlamydia genital infection. We value the β2-AR KO as a viable model that can provide reproducible results in investigating medical research, including chlamydia genital infection.
期刊介绍:
Pathogens and Disease publishes outstanding primary research on hypothesis- and discovery-driven studies on pathogens, host-pathogen interactions, host response to infection and their molecular and cellular correlates. It covers all pathogens – eukaryotes, prokaryotes, and viruses – and includes zoonotic pathogens and experimental translational applications.