Weifeng Lin, Yifan Yang, Yurong Zhu, Rong Pan, Chaonan Liu, Jiyang Pan
{"title":"Linking Gut Microbiota, Oral Microbiota, and Serum Metabolites in Insomnia Disorder: A Preliminary Study.","authors":"Weifeng Lin, Yifan Yang, Yurong Zhu, Rong Pan, Chaonan Liu, Jiyang Pan","doi":"10.2147/NSS.S472675","DOIUrl":null,"url":null,"abstract":"<p><strong>Purpose: </strong>Despite recent findings suggesting an altered gut microbiota in those suffering from insomnia disorder (ID), research into the gut microbiota, oral microbiota, serum metabolites, and their interactions in patients with ID is sparse.</p><p><strong>Patients and methods: </strong>We collected a total of 114 fecal samples, 133 oral cavity samples and 20 serum samples to characterize the gut microbiota, oral microbiota and serum metabolites in a cohort of 76 ID patients (IDs) and 59 well-matched healthy controls (HCs). We assessed the microbiota as potentially biomarkers for ID for ID by 16S rDNA sequencing and elucidated the interactions involving gut microbiota, oral microbiota and serum metabolites in ID in conjunction with untargeted metabolomics.</p><p><strong>Results: </strong>Gut and oral microbiota of IDs were dysbiotic. Gut and oral microbial biomarkers could be used to differentiate IDs from HCs. Eleven significantly altered serum metabolites, including adenosine, phenol, and phenol sulfate, differed significantly between groups. In multi-omics analyses, adenosine showed a positive correlation with genus_<i>Lachnospira</i> (<i>p=</i>0.029) and total sleep time (<i>p</i>=0.016). Additionally, phenol and phenol sulphate had a negative correlation with genus<i>_Coprococcus</i> (<i>p</i>=0.0059; <i>p</i>=0.0059) and a positive correlation with Pittsburgh Sleep Quality Index (<i>p</i>=0.006; <i>p</i>=0.006) and Insomnia Severity Index (<i>p</i>=0.021; <i>p</i>=0.021).</p><p><strong>Conclusion: </strong>Microbiota and serum metabolite changes in IDs are strongly correlated with clinical parameters, implying mechanistic links between altered bacteria, serum metabolites and ID. This study offers novel perspective into the interaction among gut microbiota, oral microbiota, and serum metabolites for ID.</p>","PeriodicalId":18896,"journal":{"name":"Nature and Science of Sleep","volume":"16 ","pages":"1959-1972"},"PeriodicalIF":3.0000,"publicationDate":"2024-12-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11633293/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Nature and Science of Sleep","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.2147/NSS.S472675","RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/1/1 0:00:00","PubModel":"eCollection","JCR":"Q2","JCRName":"CLINICAL NEUROLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
Purpose: Despite recent findings suggesting an altered gut microbiota in those suffering from insomnia disorder (ID), research into the gut microbiota, oral microbiota, serum metabolites, and their interactions in patients with ID is sparse.
Patients and methods: We collected a total of 114 fecal samples, 133 oral cavity samples and 20 serum samples to characterize the gut microbiota, oral microbiota and serum metabolites in a cohort of 76 ID patients (IDs) and 59 well-matched healthy controls (HCs). We assessed the microbiota as potentially biomarkers for ID for ID by 16S rDNA sequencing and elucidated the interactions involving gut microbiota, oral microbiota and serum metabolites in ID in conjunction with untargeted metabolomics.
Results: Gut and oral microbiota of IDs were dysbiotic. Gut and oral microbial biomarkers could be used to differentiate IDs from HCs. Eleven significantly altered serum metabolites, including adenosine, phenol, and phenol sulfate, differed significantly between groups. In multi-omics analyses, adenosine showed a positive correlation with genus_Lachnospira (p=0.029) and total sleep time (p=0.016). Additionally, phenol and phenol sulphate had a negative correlation with genus_Coprococcus (p=0.0059; p=0.0059) and a positive correlation with Pittsburgh Sleep Quality Index (p=0.006; p=0.006) and Insomnia Severity Index (p=0.021; p=0.021).
Conclusion: Microbiota and serum metabolite changes in IDs are strongly correlated with clinical parameters, implying mechanistic links between altered bacteria, serum metabolites and ID. This study offers novel perspective into the interaction among gut microbiota, oral microbiota, and serum metabolites for ID.
期刊介绍:
Nature and Science of Sleep is an international, peer-reviewed, open access journal covering all aspects of sleep science and sleep medicine, including the neurophysiology and functions of sleep, the genetics of sleep, sleep and society, biological rhythms, dreaming, sleep disorders and therapy, and strategies to optimize healthy sleep.
Specific topics covered in the journal include:
The functions of sleep in humans and other animals
Physiological and neurophysiological changes with sleep
The genetics of sleep and sleep differences
The neurotransmitters, receptors and pathways involved in controlling both sleep and wakefulness
Behavioral and pharmacological interventions aimed at improving sleep, and improving wakefulness
Sleep changes with development and with age
Sleep and reproduction (e.g., changes across the menstrual cycle, with pregnancy and menopause)
The science and nature of dreams
Sleep disorders
Impact of sleep and sleep disorders on health, daytime function and quality of life
Sleep problems secondary to clinical disorders
Interaction of society with sleep (e.g., consequences of shift work, occupational health, public health)
The microbiome and sleep
Chronotherapy
Impact of circadian rhythms on sleep, physiology, cognition and health
Mechanisms controlling circadian rhythms, centrally and peripherally
Impact of circadian rhythm disruptions (including night shift work, jet lag and social jet lag) on sleep, physiology, cognition and health
Behavioral and pharmacological interventions aimed at reducing adverse effects of circadian-related sleep disruption
Assessment of technologies and biomarkers for measuring sleep and/or circadian rhythms
Epigenetic markers of sleep or circadian disruption.