AmirAli Abbaspourmani, Abhay Shivayogimath, Ritika Singh Petersen, Anton Lyksborg-Andersen, Thomas W Hansen, Stephan S Keller, Timothy John Booth
{"title":"Patterning and nanoribbon formation in graphene by hot punching.","authors":"AmirAli Abbaspourmani, Abhay Shivayogimath, Ritika Singh Petersen, Anton Lyksborg-Andersen, Thomas W Hansen, Stephan S Keller, Timothy John Booth","doi":"10.1088/1361-6528/ad9d4c","DOIUrl":null,"url":null,"abstract":"<p><p>Large area graphene patterning is critical for applications. Current graphene patterning techniques, such as electron beam lithography (EBL) and nano imprint lithography (NIL), are time consuming and can scale unfavourably with sample size. Resist-based masking and subsequent dry plasma etching can lead to high roughness edges with no alignment to the underlying graphene crystal orientations. In this study, we present hot punching as a novel and feasible method for patterning of CVD graphene sheets supported by a PVA layer. Additionally, we observe the effect of such hot punching on graphene supported by PVA via optical microscopy, Raman spectroscopy, AFM, and TEM, including wrinkling, strain and the formation of nanoribbons with crystallographically aligned and smooth edges due to fracturing. We present hot punching as a facile technique for the production of arrays of such nanoribbons.
.</p>","PeriodicalId":19035,"journal":{"name":"Nanotechnology","volume":" ","pages":""},"PeriodicalIF":2.9000,"publicationDate":"2024-12-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Nanotechnology","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.1088/1361-6528/ad9d4c","RegionNum":4,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0
Abstract
Large area graphene patterning is critical for applications. Current graphene patterning techniques, such as electron beam lithography (EBL) and nano imprint lithography (NIL), are time consuming and can scale unfavourably with sample size. Resist-based masking and subsequent dry plasma etching can lead to high roughness edges with no alignment to the underlying graphene crystal orientations. In this study, we present hot punching as a novel and feasible method for patterning of CVD graphene sheets supported by a PVA layer. Additionally, we observe the effect of such hot punching on graphene supported by PVA via optical microscopy, Raman spectroscopy, AFM, and TEM, including wrinkling, strain and the formation of nanoribbons with crystallographically aligned and smooth edges due to fracturing. We present hot punching as a facile technique for the production of arrays of such nanoribbons.
.
期刊介绍:
The journal aims to publish papers at the forefront of nanoscale science and technology and especially those of an interdisciplinary nature. Here, nanotechnology is taken to include the ability to individually address, control, and modify structures, materials and devices with nanometre precision, and the synthesis of such structures into systems of micro- and macroscopic dimensions such as MEMS based devices. It encompasses the understanding of the fundamental physics, chemistry, biology and technology of nanometre-scale objects and how such objects can be used in the areas of computation, sensors, nanostructured materials and nano-biotechnology.