A PopPBPK-RL approach for precision dosing of benazepril in renal impaired patients.

IF 2.2 4区 医学 Q3 PHARMACOLOGY & PHARMACY
Guillermo Vigueras, Lucía Muñoz-Gil, Valerie Reinisch, Joana T Pinto
{"title":"A PopPBPK-RL approach for precision dosing of benazepril in renal impaired patients.","authors":"Guillermo Vigueras, Lucía Muñoz-Gil, Valerie Reinisch, Joana T Pinto","doi":"10.1007/s10928-024-09953-4","DOIUrl":null,"url":null,"abstract":"<p><p>Current treatment recommendations mainly rely on rule-based protocols defined from evidence-based clinical guidelines, which are difficult to adapt for high-risk patients such as those with renal impairment. Consequently, unsuccessful therapies and the occurrence of adverse drug reactions are common. Within the context of personalized medicine, that tries to deliver the right treatment dose to maximize efficacy and minimize toxicity, the concept of model-informed precision dosing proposes the use of mechanistic models, like physiologically based pharmacokinetic (PBPK) modeling, to predict drug regimes outcomes. Nonetheless, PBPK models have limited capability when computing patients' centric optimized drug doses. Consequently, reinforcement learning (RL) has been previously used to personalize drug dosage. In this work we propose the first PBPK and RL-based precision dosing system for an orally taken drug (benazepril) considering a virtual population of patients with renal disease. Population based PBPK modeling is used in combination with RL for obtaining patient tailored dose regimes. We also perform patient stratification and feature selection to better handle dose tailoring problems. Based on patients' characteristics with best predictive capabilities, benazepril dose regimes are obtained for a population with features' diversity. Obtained regimes are evaluated based on PK parameters considered. Results show that the proof-of-concept approach herein is capable of learning good dosing regimes for most patients. The use of a PopPBPK model allowed to account for intervariability of patient characteristics and be more inclusive considering also non-frequent patients. Impact analysis of patients' features reveals that renal impairment is the main driver affecting RL capabilities.</p>","PeriodicalId":16851,"journal":{"name":"Journal of Pharmacokinetics and Pharmacodynamics","volume":"52 1","pages":"6"},"PeriodicalIF":2.2000,"publicationDate":"2024-12-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Pharmacokinetics and Pharmacodynamics","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1007/s10928-024-09953-4","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"PHARMACOLOGY & PHARMACY","Score":null,"Total":0}
引用次数: 0

Abstract

Current treatment recommendations mainly rely on rule-based protocols defined from evidence-based clinical guidelines, which are difficult to adapt for high-risk patients such as those with renal impairment. Consequently, unsuccessful therapies and the occurrence of adverse drug reactions are common. Within the context of personalized medicine, that tries to deliver the right treatment dose to maximize efficacy and minimize toxicity, the concept of model-informed precision dosing proposes the use of mechanistic models, like physiologically based pharmacokinetic (PBPK) modeling, to predict drug regimes outcomes. Nonetheless, PBPK models have limited capability when computing patients' centric optimized drug doses. Consequently, reinforcement learning (RL) has been previously used to personalize drug dosage. In this work we propose the first PBPK and RL-based precision dosing system for an orally taken drug (benazepril) considering a virtual population of patients with renal disease. Population based PBPK modeling is used in combination with RL for obtaining patient tailored dose regimes. We also perform patient stratification and feature selection to better handle dose tailoring problems. Based on patients' characteristics with best predictive capabilities, benazepril dose regimes are obtained for a population with features' diversity. Obtained regimes are evaluated based on PK parameters considered. Results show that the proof-of-concept approach herein is capable of learning good dosing regimes for most patients. The use of a PopPBPK model allowed to account for intervariability of patient characteristics and be more inclusive considering also non-frequent patients. Impact analysis of patients' features reveals that renal impairment is the main driver affecting RL capabilities.

求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
4.90
自引率
4.00%
发文量
39
审稿时长
6-12 weeks
期刊介绍: Broadly speaking, the Journal of Pharmacokinetics and Pharmacodynamics covers the area of pharmacometrics. The journal is devoted to illustrating the importance of pharmacokinetics, pharmacodynamics, and pharmacometrics in drug development, clinical care, and the understanding of drug action. The journal publishes on a variety of topics related to pharmacometrics, including, but not limited to, clinical, experimental, and theoretical papers examining the kinetics of drug disposition and effects of drug action in humans, animals, in vitro, or in silico; modeling and simulation methodology, including optimal design; precision medicine; systems pharmacology; and mathematical pharmacology (including computational biology, bioengineering, and biophysics related to pharmacology, pharmacokinetics, orpharmacodynamics). Clinical papers that include population pharmacokinetic-pharmacodynamic relationships are welcome. The journal actively invites and promotes up-and-coming areas of pharmacometric research, such as real-world evidence, quality of life analyses, and artificial intelligence. The Journal of Pharmacokinetics and Pharmacodynamics is an official journal of the International Society of Pharmacometrics.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信