Engineering skyrmion from spin spiral in transition metal multilayers.

IF 2.3 4区 物理与天体物理 Q3 PHYSICS, CONDENSED MATTER
Banasree Sadhukhan
{"title":"Engineering skyrmion from spin spiral in transition metal multilayers.","authors":"Banasree Sadhukhan","doi":"10.1088/1361-648X/ad9da8","DOIUrl":null,"url":null,"abstract":"<p><p>Skyrmions having topologically protected field configurations with particle-like properties play an important role in various fields of science. Our present study focus on the generation of skyrmion from spin spiral in the magnetic multilayers of 4d/Fe/Ir(111) with 4d = Y, Zr, Nb, Mo, Ru, Rh. Here we investigate the impact of 4d transition metals on the isotropic Heisenberg exchanges and anti-symmetric Dzyaloshinskii-Moriya interactions originating from the broken inversion symmetry at the interface of 4d/Fe/Ir(111) multilayers. We find a strong exchange frustration due to the hybridization of the Fe-3d layer with both 4d and Ir-5d layers which modifies due to band filling effects of the 4d transition metals. We strengthen the analysis of exchange frustration by shedding light on the orbital decomposition of isotropic exchange interactions of Fe-3d orbitals. Our spin dynamics and Monte Carlo simulations indicate that the magnetic ground state of 4d/Fe/Ir(111) transition multilayers is a spin spiral in the<i>ab</i>-plane with a period of 1 to 2.5 nm generated by magnetic moments of Fe atoms and propagating along the<i>a</i>-direction. The spiral wavelengths in Y/Fe/Ir(111) are much larger compared to Rh/Fe/Ir(111). In order to manipulate the skyrmion phase in 4d/Fe/Ir(111), we investigate the magnetic ground state of 4d/Fe/Ir(111) transition multilayers with different external magnetic field. An increasing external magnetic field of ∼12 T is responsible for deforming the spin spiral into a isolated skyrmion which flips into skyrmion lattice phase around ∼18 T in Rh/Fe/Ir(111). Our study predict that the stability of magnetic skyrmion phase in Rh/Fe/Ir(111) against thermal fluctuations is upto temperature<i>T</i>⩽90 K.</p>","PeriodicalId":16776,"journal":{"name":"Journal of Physics: Condensed Matter","volume":" ","pages":""},"PeriodicalIF":2.3000,"publicationDate":"2024-12-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Physics: Condensed Matter","FirstCategoryId":"101","ListUrlMain":"https://doi.org/10.1088/1361-648X/ad9da8","RegionNum":4,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"PHYSICS, CONDENSED MATTER","Score":null,"Total":0}
引用次数: 0

Abstract

Skyrmions having topologically protected field configurations with particle-like properties play an important role in various fields of science. Our present study focus on the generation of skyrmion from spin spiral in the magnetic multilayers of 4d/Fe/Ir(111) with 4d = Y, Zr, Nb, Mo, Ru, Rh. Here we investigate the impact of 4d transition metals on the isotropic Heisenberg exchanges and anti-symmetric Dzyaloshinskii-Moriya interactions originating from the broken inversion symmetry at the interface of 4d/Fe/Ir(111) multilayers. We find a strong exchange frustration due to the hybridization of the Fe-3d layer with both 4d and Ir-5d layers which modifies due to band filling effects of the 4d transition metals. We strengthen the analysis of exchange frustration by shedding light on the orbital decomposition of isotropic exchange interactions of Fe-3d orbitals. Our spin dynamics and Monte Carlo simulations indicate that the magnetic ground state of 4d/Fe/Ir(111) transition multilayers is a spin spiral in theab-plane with a period of 1 to 2.5 nm generated by magnetic moments of Fe atoms and propagating along thea-direction. The spiral wavelengths in Y/Fe/Ir(111) are much larger compared to Rh/Fe/Ir(111). In order to manipulate the skyrmion phase in 4d/Fe/Ir(111), we investigate the magnetic ground state of 4d/Fe/Ir(111) transition multilayers with different external magnetic field. An increasing external magnetic field of ∼12 T is responsible for deforming the spin spiral into a isolated skyrmion which flips into skyrmion lattice phase around ∼18 T in Rh/Fe/Ir(111). Our study predict that the stability of magnetic skyrmion phase in Rh/Fe/Ir(111) against thermal fluctuations is upto temperatureT⩽90 K.

求助全文
约1分钟内获得全文 求助全文
来源期刊
Journal of Physics: Condensed Matter
Journal of Physics: Condensed Matter 物理-物理:凝聚态物理
CiteScore
5.30
自引率
7.40%
发文量
1288
审稿时长
2.1 months
期刊介绍: Journal of Physics: Condensed Matter covers the whole of condensed matter physics including soft condensed matter and nanostructures. Papers may report experimental, theoretical and simulation studies. Note that papers must contain fundamental condensed matter science: papers reporting methods of materials preparation or properties of materials without novel condensed matter content will not be accepted.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信