Hannah Thieron, Laura Krassini, Seomun Kwon, Sebastian Fricke, Sabrine Nasfi, Lorenz Oberkofler, Alessa Ruf, Julia Kehr, Karl-Heinz Kogel, Arne Weiberg, Michael Feldbrügge, Silke Robatzek, Ralph Panstruga
{"title":"Practical advice for extracellular vesicle isolation in plant–microbe interactions: Concerns, considerations, and conclusions","authors":"Hannah Thieron, Laura Krassini, Seomun Kwon, Sebastian Fricke, Sabrine Nasfi, Lorenz Oberkofler, Alessa Ruf, Julia Kehr, Karl-Heinz Kogel, Arne Weiberg, Michael Feldbrügge, Silke Robatzek, Ralph Panstruga","doi":"10.1002/jev2.70022","DOIUrl":null,"url":null,"abstract":"<p>In recent years, extracellular vesicles (EVs) have emerged as novel key players in plant–microbe interactions. While it is immensely useful to draw on the established “minimal information for studies of extracellular vesicles” (MISEV) guidelines and precedents in mammalian systems, working with plants and their associated microbes poses specific challenges. To navigate researchers through these obstacles, we offer detailed step-by-step suggestions for those embarking on EV research in the context of plant–microbe interactions. The advice is based on recent publications and our collective experience from the diverse plant and microbe systems studied in a dedicated research consortium. We provide considerations for experimental design, optimization, quality control, and recommendations on how to increase yield, purity, and reproducibility of EV isolation. With this perspective article, we aim not only to assist researchers in our field but also to promote discussions on plant and microbe EVs in the broader EV community.</p>","PeriodicalId":15811,"journal":{"name":"Journal of Extracellular Vesicles","volume":"13 12","pages":""},"PeriodicalIF":15.5000,"publicationDate":"2024-12-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11635479/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Extracellular Vesicles","FirstCategoryId":"3","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/jev2.70022","RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CELL BIOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
In recent years, extracellular vesicles (EVs) have emerged as novel key players in plant–microbe interactions. While it is immensely useful to draw on the established “minimal information for studies of extracellular vesicles” (MISEV) guidelines and precedents in mammalian systems, working with plants and their associated microbes poses specific challenges. To navigate researchers through these obstacles, we offer detailed step-by-step suggestions for those embarking on EV research in the context of plant–microbe interactions. The advice is based on recent publications and our collective experience from the diverse plant and microbe systems studied in a dedicated research consortium. We provide considerations for experimental design, optimization, quality control, and recommendations on how to increase yield, purity, and reproducibility of EV isolation. With this perspective article, we aim not only to assist researchers in our field but also to promote discussions on plant and microbe EVs in the broader EV community.
期刊介绍:
The Journal of Extracellular Vesicles is an open access research publication that focuses on extracellular vesicles, including microvesicles, exosomes, ectosomes, and apoptotic bodies. It serves as the official journal of the International Society for Extracellular Vesicles and aims to facilitate the exchange of data, ideas, and information pertaining to the chemistry, biology, and applications of extracellular vesicles. The journal covers various aspects such as the cellular and molecular mechanisms of extracellular vesicles biogenesis, technological advancements in their isolation, quantification, and characterization, the role and function of extracellular vesicles in biology, stem cell-derived extracellular vesicles and their biology, as well as the application of extracellular vesicles for pharmacological, immunological, or genetic therapies.
The Journal of Extracellular Vesicles is widely recognized and indexed by numerous services, including Biological Abstracts, BIOSIS Previews, Chemical Abstracts Service (CAS), Current Contents/Life Sciences, Directory of Open Access Journals (DOAJ), Journal Citation Reports/Science Edition, Google Scholar, ProQuest Natural Science Collection, ProQuest SciTech Collection, SciTech Premium Collection, PubMed Central/PubMed, Science Citation Index Expanded, ScienceOpen, and Scopus.