Fe-Doped Red Fluorescent Carbon Dots for Caffeine Analysis in Energy Drinks Using a Paper-Based Sensor.

IF 2.6 4区 化学 Q2 BIOCHEMICAL RESEARCH METHODS
Hazha Omar Othman
{"title":"Fe-Doped Red Fluorescent Carbon Dots for Caffeine Analysis in Energy Drinks Using a Paper-Based Sensor.","authors":"Hazha Omar Othman","doi":"10.1007/s10895-024-04062-4","DOIUrl":null,"url":null,"abstract":"<p><p>This study introduces a highly sensitive and selective method for detecting caffeine in energy drinks by using red florescence iron and nitrogen co doped carbon dots (Fe-NCDs) as a florescent prob. The Fe-NCDs were synthesized by using an eco-friendly hydrothermal. Providing uniform, quasi-spherical nanoparticles. The photoluminescence properties of the Fe-NCDs exhibit strong red emission making them suitable for fluorescence-based sensing. A microfluidic paper analytical device (µPAD) was developed and coupled with a smartphone-based detection system to facilitate portable, low-cost caffeine quantification. The Fe-NCDs were embedded in the µPADs, enabling fluorescence enhancement upon interaction with caffeine. This enhancement was quantitatively analyzed using the smartphone camera and ImageJ software, revealing a strong linear correlation in the range of 1 to 40 µg/mL when both Gray Value (G.V) and Red-Green-Blue (RGB) of reaction analyzed by the software. The limit of detection (LOD) was of 0.024 µg/mL and 0.032 µg/mL respectively for both applied principles. The methods indicate remarkable selectivity for caffeine, and was validated through accurate recovery studies in commercial samples. This innovative method provides a powerful, cost-effective, and environmentally sustainable solution for on-site caffeine detection in energy drinks, offering significant potential for application in food safety and quality control.</p>","PeriodicalId":15800,"journal":{"name":"Journal of Fluorescence","volume":" ","pages":""},"PeriodicalIF":2.6000,"publicationDate":"2024-12-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Fluorescence","FirstCategoryId":"92","ListUrlMain":"https://doi.org/10.1007/s10895-024-04062-4","RegionNum":4,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"BIOCHEMICAL RESEARCH METHODS","Score":null,"Total":0}
引用次数: 0

Abstract

This study introduces a highly sensitive and selective method for detecting caffeine in energy drinks by using red florescence iron and nitrogen co doped carbon dots (Fe-NCDs) as a florescent prob. The Fe-NCDs were synthesized by using an eco-friendly hydrothermal. Providing uniform, quasi-spherical nanoparticles. The photoluminescence properties of the Fe-NCDs exhibit strong red emission making them suitable for fluorescence-based sensing. A microfluidic paper analytical device (µPAD) was developed and coupled with a smartphone-based detection system to facilitate portable, low-cost caffeine quantification. The Fe-NCDs were embedded in the µPADs, enabling fluorescence enhancement upon interaction with caffeine. This enhancement was quantitatively analyzed using the smartphone camera and ImageJ software, revealing a strong linear correlation in the range of 1 to 40 µg/mL when both Gray Value (G.V) and Red-Green-Blue (RGB) of reaction analyzed by the software. The limit of detection (LOD) was of 0.024 µg/mL and 0.032 µg/mL respectively for both applied principles. The methods indicate remarkable selectivity for caffeine, and was validated through accurate recovery studies in commercial samples. This innovative method provides a powerful, cost-effective, and environmentally sustainable solution for on-site caffeine detection in energy drinks, offering significant potential for application in food safety and quality control.

求助全文
约1分钟内获得全文 求助全文
来源期刊
Journal of Fluorescence
Journal of Fluorescence 化学-分析化学
CiteScore
4.60
自引率
7.40%
发文量
203
审稿时长
5.4 months
期刊介绍: Journal of Fluorescence is an international forum for the publication of peer-reviewed original articles that advance the practice of this established spectroscopic technique. Topics covered include advances in theory/and or data analysis, studies of the photophysics of aromatic molecules, solvent, and environmental effects, development of stationary or time-resolved measurements, advances in fluorescence microscopy, imaging, photobleaching/recovery measurements, and/or phosphorescence for studies of cell biology, chemical biology and the advanced uses of fluorescence in flow cytometry/analysis, immunology, high throughput screening/drug discovery, DNA sequencing/arrays, genomics and proteomics. Typical applications might include studies of macromolecular dynamics and conformation, intracellular chemistry, and gene expression. The journal also publishes papers that describe the synthesis and characterization of new fluorophores, particularly those displaying unique sensitivities and/or optical properties. In addition to original articles, the Journal also publishes reviews, rapid communications, short communications, letters to the editor, topical news articles, and technical and design notes.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信