{"title":"Fe-Doped Red Fluorescent Carbon Dots for Caffeine Analysis in Energy Drinks Using a Paper-Based Sensor.","authors":"Hazha Omar Othman","doi":"10.1007/s10895-024-04062-4","DOIUrl":null,"url":null,"abstract":"<p><p>This study introduces a highly sensitive and selective method for detecting caffeine in energy drinks by using red florescence iron and nitrogen co doped carbon dots (Fe-NCDs) as a florescent prob. The Fe-NCDs were synthesized by using an eco-friendly hydrothermal. Providing uniform, quasi-spherical nanoparticles. The photoluminescence properties of the Fe-NCDs exhibit strong red emission making them suitable for fluorescence-based sensing. A microfluidic paper analytical device (µPAD) was developed and coupled with a smartphone-based detection system to facilitate portable, low-cost caffeine quantification. The Fe-NCDs were embedded in the µPADs, enabling fluorescence enhancement upon interaction with caffeine. This enhancement was quantitatively analyzed using the smartphone camera and ImageJ software, revealing a strong linear correlation in the range of 1 to 40 µg/mL when both Gray Value (G.V) and Red-Green-Blue (RGB) of reaction analyzed by the software. The limit of detection (LOD) was of 0.024 µg/mL and 0.032 µg/mL respectively for both applied principles. The methods indicate remarkable selectivity for caffeine, and was validated through accurate recovery studies in commercial samples. This innovative method provides a powerful, cost-effective, and environmentally sustainable solution for on-site caffeine detection in energy drinks, offering significant potential for application in food safety and quality control.</p>","PeriodicalId":15800,"journal":{"name":"Journal of Fluorescence","volume":" ","pages":""},"PeriodicalIF":2.6000,"publicationDate":"2024-12-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Fluorescence","FirstCategoryId":"92","ListUrlMain":"https://doi.org/10.1007/s10895-024-04062-4","RegionNum":4,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"BIOCHEMICAL RESEARCH METHODS","Score":null,"Total":0}
引用次数: 0
Abstract
This study introduces a highly sensitive and selective method for detecting caffeine in energy drinks by using red florescence iron and nitrogen co doped carbon dots (Fe-NCDs) as a florescent prob. The Fe-NCDs were synthesized by using an eco-friendly hydrothermal. Providing uniform, quasi-spherical nanoparticles. The photoluminescence properties of the Fe-NCDs exhibit strong red emission making them suitable for fluorescence-based sensing. A microfluidic paper analytical device (µPAD) was developed and coupled with a smartphone-based detection system to facilitate portable, low-cost caffeine quantification. The Fe-NCDs were embedded in the µPADs, enabling fluorescence enhancement upon interaction with caffeine. This enhancement was quantitatively analyzed using the smartphone camera and ImageJ software, revealing a strong linear correlation in the range of 1 to 40 µg/mL when both Gray Value (G.V) and Red-Green-Blue (RGB) of reaction analyzed by the software. The limit of detection (LOD) was of 0.024 µg/mL and 0.032 µg/mL respectively for both applied principles. The methods indicate remarkable selectivity for caffeine, and was validated through accurate recovery studies in commercial samples. This innovative method provides a powerful, cost-effective, and environmentally sustainable solution for on-site caffeine detection in energy drinks, offering significant potential for application in food safety and quality control.
期刊介绍:
Journal of Fluorescence is an international forum for the publication of peer-reviewed original articles that advance the practice of this established spectroscopic technique. Topics covered include advances in theory/and or data analysis, studies of the photophysics of aromatic molecules, solvent, and environmental effects, development of stationary or time-resolved measurements, advances in fluorescence microscopy, imaging, photobleaching/recovery measurements, and/or phosphorescence for studies of cell biology, chemical biology and the advanced uses of fluorescence in flow cytometry/analysis, immunology, high throughput screening/drug discovery, DNA sequencing/arrays, genomics and proteomics. Typical applications might include studies of macromolecular dynamics and conformation, intracellular chemistry, and gene expression. The journal also publishes papers that describe the synthesis and characterization of new fluorophores, particularly those displaying unique sensitivities and/or optical properties. In addition to original articles, the Journal also publishes reviews, rapid communications, short communications, letters to the editor, topical news articles, and technical and design notes.