An IL-6 promoter variant (-174 G/C) augments IL-6 production and alters skeletal muscle transcription in response to exercise in mice.

IF 3.3 3区 医学 Q1 PHYSIOLOGY
L E Watson, C L MacRae, P Kallingappa, Y Cao, X Li, C P Hedges, R F D'Souza, N Fleming, K M Mellor, T L Merry
{"title":"An IL-6 promoter variant (-174 G/C) augments IL-6 production and alters skeletal muscle transcription in response to exercise in mice.","authors":"L E Watson, C L MacRae, P Kallingappa, Y Cao, X Li, C P Hedges, R F D'Souza, N Fleming, K M Mellor, T L Merry","doi":"10.1152/japplphysiol.00391.2024","DOIUrl":null,"url":null,"abstract":"<p><p>Interleukin-6 (IL-6) is produced and secreted by skeletal muscle cells during exercise and plays an important role in mediating metabolic responses to exercise. The promoter region of the IL-6 gene contains a common genetic variant (-174 G/C, rs1800795) which may alter responses to exercise training. To isolate the impact of this gene variant on exercise-induced IL-6 expression and skeletal muscle transcription responses following exercise we generated knock-in mice with a GG or variant CC genotype for the murine homolog of rs1800795. The overall gross metabolic phenotype of resting mice was similar between genotypes; however, following acute treadmill running the variant CC genotype was associated with a greater increase in skeletal muscle IL-6 mRNA and circulating IL-6. Furthermore, we observed that mice with the variant CC genotype exhibited sex-specific differences in skeletal muscle master metabolism regulatory genes, and had greater increases in genes controlling mitochondrial biogenesis in skeletal muscle post-exercise. However, there was no effect of genotype on exercise-induced skeletal muscle glycogen depletion, circulating free fatty acids, blood glucose and lactate production, or exercise-responsive gene expression in subcutaneous fat. These findings suggest that the IL-6 promoter variant -174 G/C may result in enhanced skeletal muscle adaptations in response to exercise training, and could mean that individuals with the 'C' allele may more readily gain improvements in metabolic health in response to exercise training.</p>","PeriodicalId":15160,"journal":{"name":"Journal of applied physiology","volume":" ","pages":""},"PeriodicalIF":3.3000,"publicationDate":"2024-12-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of applied physiology","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1152/japplphysiol.00391.2024","RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"PHYSIOLOGY","Score":null,"Total":0}
引用次数: 0

Abstract

Interleukin-6 (IL-6) is produced and secreted by skeletal muscle cells during exercise and plays an important role in mediating metabolic responses to exercise. The promoter region of the IL-6 gene contains a common genetic variant (-174 G/C, rs1800795) which may alter responses to exercise training. To isolate the impact of this gene variant on exercise-induced IL-6 expression and skeletal muscle transcription responses following exercise we generated knock-in mice with a GG or variant CC genotype for the murine homolog of rs1800795. The overall gross metabolic phenotype of resting mice was similar between genotypes; however, following acute treadmill running the variant CC genotype was associated with a greater increase in skeletal muscle IL-6 mRNA and circulating IL-6. Furthermore, we observed that mice with the variant CC genotype exhibited sex-specific differences in skeletal muscle master metabolism regulatory genes, and had greater increases in genes controlling mitochondrial biogenesis in skeletal muscle post-exercise. However, there was no effect of genotype on exercise-induced skeletal muscle glycogen depletion, circulating free fatty acids, blood glucose and lactate production, or exercise-responsive gene expression in subcutaneous fat. These findings suggest that the IL-6 promoter variant -174 G/C may result in enhanced skeletal muscle adaptations in response to exercise training, and could mean that individuals with the 'C' allele may more readily gain improvements in metabolic health in response to exercise training.

求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
6.00
自引率
9.10%
发文量
296
审稿时长
2-4 weeks
期刊介绍: The Journal of Applied Physiology publishes the highest quality original research and reviews that examine novel adaptive and integrative physiological mechanisms in humans and animals that advance the field. The journal encourages the submission of manuscripts that examine the acute and adaptive responses of various organs, tissues, cells and/or molecular pathways to environmental, physiological and/or pathophysiological stressors. As an applied physiology journal, topics of interest are not limited to a particular organ system. The journal, therefore, considers a wide array of integrative and translational research topics examining the mechanisms involved in disease processes and mitigation strategies, as well as the promotion of health and well-being throughout the lifespan. Priority is given to manuscripts that provide mechanistic insight deemed to exert an impact on the field.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信