Expression of Random Sequences and de novo Evolved Genes From the Mouse in Human Cells Reveals Functional Diversity and Specificity.

IF 3.2 2区 生物学 Q2 EVOLUTIONARY BIOLOGY
Silvia Aldrovandi, Johana Fajardo Castro, Kristian Ullrich, Amir Karger, Victor Luria, Diethard Tautz
{"title":"Expression of Random Sequences and de novo Evolved Genes From the Mouse in Human Cells Reveals Functional Diversity and Specificity.","authors":"Silvia Aldrovandi, Johana Fajardo Castro, Kristian Ullrich, Amir Karger, Victor Luria, Diethard Tautz","doi":"10.1093/gbe/evae175","DOIUrl":null,"url":null,"abstract":"<p><p>Proteins that emerge de novo from noncoding DNA could negatively or positively influence cellular physiology in the sense of providing a possible adaptive advantage. Here, we employ two approaches to study such effects in a human cell line by expressing random sequences and mouse de novo genes that lack homologs in the human genome. We show that both approaches lead to differential growth effects of the cell clones dependent on the sequences they express. For the random sequences, 53% of the clones decreased in frequency, and about 8% increased in frequency in a joint growth experiment. Of the 14 mouse de novo genes tested in a similar joint growth experiment, 10 decreased, and 3 increased in frequency. When individually analysed, each mouse de novo gene triggers a unique transcriptomic response in the human cells, indicating mostly specific rather than generalized effects. Structural analysis of the de novo gene open reading frames (ORFs) reveals a range of intrinsic disorder scores and/or foldability into alpha-helices or beta sheets, but these do not correlate with their effects on the growth of the cells. Our results indicate that de novo evolved ORFs could easily become integrated into cellular regulatory pathways, since most interact with components of these pathways and could therefore become directly subject to positive selection if the general conditions allow this.</p>","PeriodicalId":12779,"journal":{"name":"Genome Biology and Evolution","volume":"16 12","pages":""},"PeriodicalIF":3.2000,"publicationDate":"2024-12-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11635099/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Genome Biology and Evolution","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1093/gbe/evae175","RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"EVOLUTIONARY BIOLOGY","Score":null,"Total":0}
引用次数: 0

Abstract

Proteins that emerge de novo from noncoding DNA could negatively or positively influence cellular physiology in the sense of providing a possible adaptive advantage. Here, we employ two approaches to study such effects in a human cell line by expressing random sequences and mouse de novo genes that lack homologs in the human genome. We show that both approaches lead to differential growth effects of the cell clones dependent on the sequences they express. For the random sequences, 53% of the clones decreased in frequency, and about 8% increased in frequency in a joint growth experiment. Of the 14 mouse de novo genes tested in a similar joint growth experiment, 10 decreased, and 3 increased in frequency. When individually analysed, each mouse de novo gene triggers a unique transcriptomic response in the human cells, indicating mostly specific rather than generalized effects. Structural analysis of the de novo gene open reading frames (ORFs) reveals a range of intrinsic disorder scores and/or foldability into alpha-helices or beta sheets, but these do not correlate with their effects on the growth of the cells. Our results indicate that de novo evolved ORFs could easily become integrated into cellular regulatory pathways, since most interact with components of these pathways and could therefore become directly subject to positive selection if the general conditions allow this.

求助全文
约1分钟内获得全文 求助全文
来源期刊
Genome Biology and Evolution
Genome Biology and Evolution EVOLUTIONARY BIOLOGY-GENETICS & HEREDITY
CiteScore
5.80
自引率
6.10%
发文量
169
审稿时长
1 months
期刊介绍: About the journal Genome Biology and Evolution (GBE) publishes leading original research at the interface between evolutionary biology and genomics. Papers considered for publication report novel evolutionary findings that concern natural genome diversity, population genomics, the structure, function, organisation and expression of genomes, comparative genomics, proteomics, and environmental genomic interactions. Major evolutionary insights from the fields of computational biology, structural biology, developmental biology, and cell biology are also considered, as are theoretical advances in the field of genome evolution. GBE’s scope embraces genome-wide evolutionary investigations at all taxonomic levels and for all forms of life — within populations or across domains. Its aims are to further the understanding of genomes in their evolutionary context and further the understanding of evolution from a genome-wide perspective.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信