Peter Smith, Andrew Joseph, Craig Baker-Austin, Nisha Kang, Sandrine Baron, Laëtitia Le Devendec, Eric Jouy, Thomas Chisnall, Alistair R Davies, Stefan Schwarz, Andrea T Feßler, Tanja Ahrens, Johanna Jahnen, Thomas Alter, Susanne Fleischmann, Jens Andre Hammerl, Claudia Jäckel, Charles M Gieseker, Tina C Crosby, Elliott C Kittel, Ron A Miller, Trevor Alexander, Kayleigh Carranza, Claire B Burbick, Biyun Ching, Jun Heng Soh, You Rong Chng, Wai Kwan Wong, Charlene J Fernandez, Siow Foong Chang, David Verner-Jeffreys, Andy Powell
{"title":"Epidemiological cut-off values for Vibrio parahaemolyticus calculated from minimal inhibitory concentration data generated at 35 and 28°C.","authors":"Peter Smith, Andrew Joseph, Craig Baker-Austin, Nisha Kang, Sandrine Baron, Laëtitia Le Devendec, Eric Jouy, Thomas Chisnall, Alistair R Davies, Stefan Schwarz, Andrea T Feßler, Tanja Ahrens, Johanna Jahnen, Thomas Alter, Susanne Fleischmann, Jens Andre Hammerl, Claudia Jäckel, Charles M Gieseker, Tina C Crosby, Elliott C Kittel, Ron A Miller, Trevor Alexander, Kayleigh Carranza, Claire B Burbick, Biyun Ching, Jun Heng Soh, You Rong Chng, Wai Kwan Wong, Charlene J Fernandez, Siow Foong Chang, David Verner-Jeffreys, Andy Powell","doi":"10.3354/dao03831","DOIUrl":null,"url":null,"abstract":"<p><p>This work was performed to generate the data needed to set epidemiological cut-off values for minimal inhibitory concentrations (MICs) of 10 antimicrobial agents against Vibrio parahaemolyticus determined using standardised broth microdilution protocols. Eight laboratories performed broth microdilution tests with incubation at 35°C for 16 to 20 h, and 7 also performed tests on the same isolates with incubation at 28°C for 24 to 28 h. Data were analysed by the ECOFFinder and normalised resistance interpretation algorithms. The cut-off values calculated for ceftazidime, florfenicol and trimethoprim/sulfamethoxazole, 1, 1 and 0.25/4.75 µg ml-1, respectively, were the same when calculated from data obtained at both temperatures. The cut-off values calculated from data obtained at 35°C and from data obtained at 28°C were 0.25 and 0.5 µg ml-1 for enrofloxacin, 2 and 4 µg ml-1 for gentamicin, 0.5 and 1 µg ml-1 for oxolinic acid and 2 and 1 µg ml-1 for oxytetracycline, respectively. The influence of incubation temperature on MIC values was investigated by comparing MICs obtained at 35 and 28°C for a specific antimicrobial agent with a particular isolate by an individual laboratory. Results showed that 56% of 1473 of these paired MIC values were identical, while 38% differed from one another by not more than 1 dilution step. The data generated in this work will be submitted to the Clinical and Laboratory Standards Institute for consideration in their setting of internationally agreed epidemiological cut-off values for V. parahaemolyticus that are essential for interpreting antimicrobial susceptibility testing data of this species.</p>","PeriodicalId":11252,"journal":{"name":"Diseases of aquatic organisms","volume":"160 ","pages":"127-134"},"PeriodicalIF":1.1000,"publicationDate":"2024-12-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Diseases of aquatic organisms","FirstCategoryId":"97","ListUrlMain":"https://doi.org/10.3354/dao03831","RegionNum":4,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"FISHERIES","Score":null,"Total":0}
引用次数: 0
Abstract
This work was performed to generate the data needed to set epidemiological cut-off values for minimal inhibitory concentrations (MICs) of 10 antimicrobial agents against Vibrio parahaemolyticus determined using standardised broth microdilution protocols. Eight laboratories performed broth microdilution tests with incubation at 35°C for 16 to 20 h, and 7 also performed tests on the same isolates with incubation at 28°C for 24 to 28 h. Data were analysed by the ECOFFinder and normalised resistance interpretation algorithms. The cut-off values calculated for ceftazidime, florfenicol and trimethoprim/sulfamethoxazole, 1, 1 and 0.25/4.75 µg ml-1, respectively, were the same when calculated from data obtained at both temperatures. The cut-off values calculated from data obtained at 35°C and from data obtained at 28°C were 0.25 and 0.5 µg ml-1 for enrofloxacin, 2 and 4 µg ml-1 for gentamicin, 0.5 and 1 µg ml-1 for oxolinic acid and 2 and 1 µg ml-1 for oxytetracycline, respectively. The influence of incubation temperature on MIC values was investigated by comparing MICs obtained at 35 and 28°C for a specific antimicrobial agent with a particular isolate by an individual laboratory. Results showed that 56% of 1473 of these paired MIC values were identical, while 38% differed from one another by not more than 1 dilution step. The data generated in this work will be submitted to the Clinical and Laboratory Standards Institute for consideration in their setting of internationally agreed epidemiological cut-off values for V. parahaemolyticus that are essential for interpreting antimicrobial susceptibility testing data of this species.
期刊介绍:
DAO publishes Research Articles, Reviews, and Notes, as well as Comments/Reply Comments (for details see DAO 48:161), Theme Sections and Opinion Pieces. For details consult the Guidelines for Authors. Papers may cover all forms of life - animals, plants and microorganisms - in marine, limnetic and brackish habitats. DAO''s scope includes any research focusing on diseases in aquatic organisms, specifically:
-Diseases caused by coexisting organisms, e.g. viruses, bacteria, fungi, protistans, metazoans; characterization of pathogens
-Diseases caused by abiotic factors (critical intensities of environmental properties, including pollution)-
Diseases due to internal circumstances (innate, idiopathic, genetic)-
Diseases due to proliferative disorders (neoplasms)-
Disease diagnosis, treatment and prevention-
Molecular aspects of diseases-
Nutritional disorders-
Stress and physical injuries-
Epidemiology/epizootiology-
Parasitology-
Toxicology-
Diseases of aquatic organisms affecting human health and well-being (with the focus on the aquatic organism)-
Diseases as indicators of humanity''s detrimental impact on nature-
Genomics, proteomics and metabolomics of disease-
Immunology and disease prevention-
Animal welfare-
Zoonosis