Red Blood Cells Capture and Deliver Bacterial DNA to Drive Host Responses During Polymicrobial Sepsis.

IF 13.3 1区 医学 Q1 MEDICINE, RESEARCH & EXPERIMENTAL
L K Metthew Lam, Nathan J Klingensmith, Layal Sayegh, Emily Oatman, Joshua S Jose, Christopher V Cosgriff, Kaitlyn A Eckart, John McGinnis, Piyush Ranjan, Matthew Lanza, Nadir Yehya, Nuala J Meyer, Robert P Dickson, Nilam S Mangalmurti
{"title":"Red Blood Cells Capture and Deliver Bacterial DNA to Drive Host Responses During Polymicrobial Sepsis.","authors":"L K Metthew Lam, Nathan J Klingensmith, Layal Sayegh, Emily Oatman, Joshua S Jose, Christopher V Cosgriff, Kaitlyn A Eckart, John McGinnis, Piyush Ranjan, Matthew Lanza, Nadir Yehya, Nuala J Meyer, Robert P Dickson, Nilam S Mangalmurti","doi":"10.1172/JCI182127","DOIUrl":null,"url":null,"abstract":"<p><p>Red blood cells (RBCs), traditionally recognized for their role in transporting oxygen, play a pivotal role in the body's immune response by expressing TLR9 and scavenging excess host cell-free DNA. DNA capture by RBCs leads to accelerated RBC clearance and triggers inflammation. Whether RBCs can also acquire microbial DNA during infections is unknown. Murine RBCs acquire microbial DNA in vitro and bacterial-DNA-induced macrophage activation was augmented by WT but not Tlr9-deleted RBCs. In a mouse model of polymicrobial sepsis, RBC-bound bacterial DNA was elevated in WT but not in erythroid Tlr9-deleted mice. Plasma cytokine analysis in these mice revealed distinct sepsis clusters characterized by persistent hypothermia and hyperinflammation in the most severely affected subjects. RBC-Tlr9 deletion attenuated plasma and tissue IL-6 production in the most severe group. Parallel findings in human subjects confirmed that RBCs from septic patients harbored more bacterial DNA compared to healthy individuals. Further analysis through 16S sequencing of RBC-bound DNA illustrated distinct microbial communities, with RBC-bound DNA composition correlating with plasma IL-6 in patients with sepsis. Collectively, these findings unveil RBCs as overlooked reservoirs and couriers of microbial DNA, capable of influencing host inflammatory responses in sepsis.</p>","PeriodicalId":15469,"journal":{"name":"Journal of Clinical Investigation","volume":" ","pages":""},"PeriodicalIF":13.3000,"publicationDate":"2024-12-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Clinical Investigation","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1172/JCI182127","RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MEDICINE, RESEARCH & EXPERIMENTAL","Score":null,"Total":0}
引用次数: 0

Abstract

Red blood cells (RBCs), traditionally recognized for their role in transporting oxygen, play a pivotal role in the body's immune response by expressing TLR9 and scavenging excess host cell-free DNA. DNA capture by RBCs leads to accelerated RBC clearance and triggers inflammation. Whether RBCs can also acquire microbial DNA during infections is unknown. Murine RBCs acquire microbial DNA in vitro and bacterial-DNA-induced macrophage activation was augmented by WT but not Tlr9-deleted RBCs. In a mouse model of polymicrobial sepsis, RBC-bound bacterial DNA was elevated in WT but not in erythroid Tlr9-deleted mice. Plasma cytokine analysis in these mice revealed distinct sepsis clusters characterized by persistent hypothermia and hyperinflammation in the most severely affected subjects. RBC-Tlr9 deletion attenuated plasma and tissue IL-6 production in the most severe group. Parallel findings in human subjects confirmed that RBCs from septic patients harbored more bacterial DNA compared to healthy individuals. Further analysis through 16S sequencing of RBC-bound DNA illustrated distinct microbial communities, with RBC-bound DNA composition correlating with plasma IL-6 in patients with sepsis. Collectively, these findings unveil RBCs as overlooked reservoirs and couriers of microbial DNA, capable of influencing host inflammatory responses in sepsis.

求助全文
约1分钟内获得全文 求助全文
来源期刊
Journal of Clinical Investigation
Journal of Clinical Investigation 医学-医学:研究与实验
CiteScore
24.50
自引率
1.30%
发文量
1034
审稿时长
2 months
期刊介绍: The Journal of Clinical Investigation, established in 1924 by the ASCI, is a prestigious publication that focuses on breakthroughs in basic and clinical biomedical science, with the goal of advancing the field of medicine. With an impressive Impact Factor of 15.9 in 2022, it is recognized as one of the leading journals in the "Medicine, Research & Experimental" category of the Web of Science. The journal attracts a diverse readership from various medical disciplines and sectors. It publishes a wide range of research articles encompassing all biomedical specialties, including Autoimmunity, Gastroenterology, Immunology, Metabolism, Nephrology, Neuroscience, Oncology, Pulmonology, Vascular Biology, and many others. The Editorial Board consists of esteemed academic editors who possess extensive expertise in their respective fields. They are actively involved in research, ensuring the journal's high standards of publication and scientific rigor.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信