{"title":"Legionella uses host Rab GTPases and BAP31 to create a unique ER niche.","authors":"Attinder Chadha, Yu Yanai, Hiromu Oide, Yuichi Wakana, Hiroki Inoue, Saradindu Saha, Manish Paul, Mitsuo Tagaya, Kohei Arasaki, Shaeri Mukherjee","doi":"10.1016/j.celrep.2024.115053","DOIUrl":null,"url":null,"abstract":"<p><p>The bacterium Legionella pneumophila secretes numerous effector proteins that manipulate endoplasmic reticulum (ER)-derived vesicles to form the Legionella-containing vacuole (LCV). Despite extensive studies, whether the LCV membrane is separate from or connected to the host ER network remains unclear. Here, we show that the smooth ER (sER) is closely associated with the LCV early in infection. Remarkably, Legionella forms a distinct rough ER (rER) niche at later stages, disconnected from the host ER network. We discover that host small GTPases Rab10 and Rab4 and an ER protein, BAP31, play crucial roles in transitioning the LCV from an sER to an rER. Additionally, we have identified a Legionella effector, Lpg1152, that binds to BAP31. Interestingly, the optimal growth of Legionella is dependent on both BAP31 and Lpg1152. These findings detail the complex interplay between host and pathogen in transforming the LCV membrane from a host-associated sER to a distinct rER.</p>","PeriodicalId":9798,"journal":{"name":"Cell reports","volume":"43 12","pages":"115053"},"PeriodicalIF":7.5000,"publicationDate":"2024-12-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Cell reports","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1016/j.celrep.2024.115053","RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/12/10 0:00:00","PubModel":"Epub","JCR":"Q1","JCRName":"CELL BIOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
The bacterium Legionella pneumophila secretes numerous effector proteins that manipulate endoplasmic reticulum (ER)-derived vesicles to form the Legionella-containing vacuole (LCV). Despite extensive studies, whether the LCV membrane is separate from or connected to the host ER network remains unclear. Here, we show that the smooth ER (sER) is closely associated with the LCV early in infection. Remarkably, Legionella forms a distinct rough ER (rER) niche at later stages, disconnected from the host ER network. We discover that host small GTPases Rab10 and Rab4 and an ER protein, BAP31, play crucial roles in transitioning the LCV from an sER to an rER. Additionally, we have identified a Legionella effector, Lpg1152, that binds to BAP31. Interestingly, the optimal growth of Legionella is dependent on both BAP31 and Lpg1152. These findings detail the complex interplay between host and pathogen in transforming the LCV membrane from a host-associated sER to a distinct rER.
期刊介绍:
Cell Reports publishes high-quality research across the life sciences and focuses on new biological insight as its primary criterion for publication. The journal offers three primary article types: Reports, which are shorter single-point articles, research articles, which are longer and provide deeper mechanistic insights, and resources, which highlight significant technical advances or major informational datasets that contribute to biological advances. Reviews covering recent literature in emerging and active fields are also accepted.
The Cell Reports Portfolio includes gold open-access journals that cover life, medical, and physical sciences, and its mission is to make cutting-edge research and methodologies available to a wide readership.
The journal's professional in-house editors work closely with authors, reviewers, and the scientific advisory board, which consists of current and future leaders in their respective fields. The advisory board guides the scope, content, and quality of the journal, but editorial decisions are independently made by the in-house scientific editors of Cell Reports.