{"title":"In vitro reduction of enamel erosion by sugarcane-derived cystatin associated with sodium trimetaphosphate.","authors":"Carolina Ruis Ferrari, Karolyne Sayuri de Araujo Kitamoto, Vinicius Taioqui Pelá, Éven Akemi Taira, Tamara Teodoro Araújo, Larissa Tercilia Grizzo Thomassian, Flávio Henrique-Silva, Juliano Pelim Pessan, Marília Afonso Rabelo Buzalaf","doi":"10.1590/1807-3107bor-2024.vol38.0124","DOIUrl":null,"url":null,"abstract":"<p><p>The objective of this in vitro study was to assess the efficacy of CaneCPI-5, either alone or in combination with various concentrations of sodium trimetaphosphate (TMP) in protecting against initial enamel erosion. A total of 135 bovine enamel specimens were prepared and categorized into nine groups (n/group=15) according to the following treatments: Deionized water; Commercial solution (Elmex Erosion ProtectionTM); 0.1 mg/mL CaneCPI-5; 0.5% TMP; 1.0% TMP; 3.0% TMP; 0.1 mg/mL CaneCPI-5+0.5% TMP; 0.1 mg/mL CaneCPI-5+1.0%TMP; and 0.1 mg/mL CaneCPI-5+3.0%TMP. The specimens were treated with the respective solutions for 2 h, followed by acquired enamel pellicle formation for 2 h and exposure to 0.65% citric acid (CA) for 1 min. These procedures were repeated once a day for three consecutive days. Demineralization was assessed by the percentage change in surface hardness (%CSH) and calcium release into CA, analyzed by the Arsenazo III method. The data were evaluated using Kruskal-Wallis/Dunn's tests. Regarding %CSH, CaneCPI-5+3.0%TMP was the most effective treatment when compared to the CaneCPI-5 group alone. As for calcium release into CA, the CaneCPI-5+0.5% TMP and CaneCPI-5 groups (both with lower calcium release) did not significantly differ from the commercial solution. In conclusion, combination of CaneCPI-5 with TMP enhances the protective potential against initial enamel erosion in vitro.</p>","PeriodicalId":9240,"journal":{"name":"Brazilian oral research","volume":"38 ","pages":"e124"},"PeriodicalIF":1.5000,"publicationDate":"2024-12-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11654876/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Brazilian oral research","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1590/1807-3107bor-2024.vol38.0124","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/1/1 0:00:00","PubModel":"eCollection","JCR":"Q3","JCRName":"DENTISTRY, ORAL SURGERY & MEDICINE","Score":null,"Total":0}
引用次数: 0
Abstract
The objective of this in vitro study was to assess the efficacy of CaneCPI-5, either alone or in combination with various concentrations of sodium trimetaphosphate (TMP) in protecting against initial enamel erosion. A total of 135 bovine enamel specimens were prepared and categorized into nine groups (n/group=15) according to the following treatments: Deionized water; Commercial solution (Elmex Erosion ProtectionTM); 0.1 mg/mL CaneCPI-5; 0.5% TMP; 1.0% TMP; 3.0% TMP; 0.1 mg/mL CaneCPI-5+0.5% TMP; 0.1 mg/mL CaneCPI-5+1.0%TMP; and 0.1 mg/mL CaneCPI-5+3.0%TMP. The specimens were treated with the respective solutions for 2 h, followed by acquired enamel pellicle formation for 2 h and exposure to 0.65% citric acid (CA) for 1 min. These procedures were repeated once a day for three consecutive days. Demineralization was assessed by the percentage change in surface hardness (%CSH) and calcium release into CA, analyzed by the Arsenazo III method. The data were evaluated using Kruskal-Wallis/Dunn's tests. Regarding %CSH, CaneCPI-5+3.0%TMP was the most effective treatment when compared to the CaneCPI-5 group alone. As for calcium release into CA, the CaneCPI-5+0.5% TMP and CaneCPI-5 groups (both with lower calcium release) did not significantly differ from the commercial solution. In conclusion, combination of CaneCPI-5 with TMP enhances the protective potential against initial enamel erosion in vitro.