The concept of cone opponency may extend beyond accommodation, to myopiagenesis and emmetropization, for a better peripheral defocus lens.

IF 3.7 3区 医学 Q1 OPHTHALMOLOGY
Asia-Pacific Journal of Ophthalmology Pub Date : 2024-11-01 Epub Date: 2024-12-09 DOI:10.1016/j.apjo.2024.100125
Edward S F Liu, Mary Kim Elizabeth Tan Cudia, Graham K Y Wong, Chung-Nga Ko, Dennis S C Lam
{"title":"The concept of cone opponency may extend beyond accommodation, to myopiagenesis and emmetropization, for a better peripheral defocus lens.","authors":"Edward S F Liu, Mary Kim Elizabeth Tan Cudia, Graham K Y Wong, Chung-Nga Ko, Dennis S C Lam","doi":"10.1016/j.apjo.2024.100125","DOIUrl":null,"url":null,"abstract":"<p><p>Myopia has ever-rising prevalence in the past few decades globally. Its pathogenesis is still not adequately elucidated especially at the signal transduction level. For the environmental risk factors, there is a large body of fragmented knowledge about the visual inputs for accommodation, myopiagenesis and emmetropization, with the latter two being essentially local processes. The red-green and yellow-blue chromatic pathways, together with the underlying L-M and S-(L+M) cone opponency, seem to be the common denominator amongst them. In this review, experimental and observational evidence are summarized to delineate the interplay of them. This review may establish the pivotal role of longitudinal chromatic aberration (LCA) for a mechanistic approach to future research in myopia control. This review looks into the mechanistic processes underlying myopiagenesis and emmetropization, specifically focusing on chromatic aberration and cone opponency in vision as pivotal components. The roles of longitudinal chromatic aberration (LCA) and cone contrast in myopia onset and development are intriguing. How visual input and chromatic pathways (specifically, red-green and blue-yellow cone opponency) contribute to accommodation that may trigger emmetropization mechanisms, thereby influencing eye growth patterns are explored and discussed. In brief, this manuscript delves into the physiology of visual processing and highlights a foundational aspect of visual science that may account for a \"Go\" or \"Stop\" signaling in axial eye growth. It further proposes a metric to gauge myopia-inhibiting optical devices such as the peripheral defocus lenses, for its best iteration. Future research in the above-mentioned areas is warranted.</p>","PeriodicalId":8594,"journal":{"name":"Asia-Pacific Journal of Ophthalmology","volume":" ","pages":"100125"},"PeriodicalIF":3.7000,"publicationDate":"2024-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Asia-Pacific Journal of Ophthalmology","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1016/j.apjo.2024.100125","RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/12/9 0:00:00","PubModel":"Epub","JCR":"Q1","JCRName":"OPHTHALMOLOGY","Score":null,"Total":0}
引用次数: 0

Abstract

Myopia has ever-rising prevalence in the past few decades globally. Its pathogenesis is still not adequately elucidated especially at the signal transduction level. For the environmental risk factors, there is a large body of fragmented knowledge about the visual inputs for accommodation, myopiagenesis and emmetropization, with the latter two being essentially local processes. The red-green and yellow-blue chromatic pathways, together with the underlying L-M and S-(L+M) cone opponency, seem to be the common denominator amongst them. In this review, experimental and observational evidence are summarized to delineate the interplay of them. This review may establish the pivotal role of longitudinal chromatic aberration (LCA) for a mechanistic approach to future research in myopia control. This review looks into the mechanistic processes underlying myopiagenesis and emmetropization, specifically focusing on chromatic aberration and cone opponency in vision as pivotal components. The roles of longitudinal chromatic aberration (LCA) and cone contrast in myopia onset and development are intriguing. How visual input and chromatic pathways (specifically, red-green and blue-yellow cone opponency) contribute to accommodation that may trigger emmetropization mechanisms, thereby influencing eye growth patterns are explored and discussed. In brief, this manuscript delves into the physiology of visual processing and highlights a foundational aspect of visual science that may account for a "Go" or "Stop" signaling in axial eye growth. It further proposes a metric to gauge myopia-inhibiting optical devices such as the peripheral defocus lenses, for its best iteration. Future research in the above-mentioned areas is warranted.

求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
8.10
自引率
18.20%
发文量
197
审稿时长
6 weeks
期刊介绍: The Asia-Pacific Journal of Ophthalmology, a bimonthly, peer-reviewed online scientific publication, is an official publication of the Asia-Pacific Academy of Ophthalmology (APAO), a supranational organization which is committed to research, training, learning, publication and knowledge and skill transfers in ophthalmology and visual sciences. The Asia-Pacific Journal of Ophthalmology welcomes review articles on currently hot topics, original, previously unpublished manuscripts describing clinical investigations, clinical observations and clinically relevant laboratory investigations, as well as .perspectives containing personal viewpoints on topics with broad interests. Editorials are published by invitation only. Case reports are generally not considered. The Asia-Pacific Journal of Ophthalmology covers 16 subspecialties and is freely circulated among individual members of the APAO’s member societies, which amounts to a potential readership of over 50,000.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信