Antimicrobial activity of PMMA enriched with nano-clay loaded with metronidazole and chlorhexidine.

IF 1.5 4区 医学 Q3 DENTISTRY, ORAL SURGERY & MEDICINE
Brazilian oral research Pub Date : 2024-12-09 eCollection Date: 2024-01-01 DOI:10.1590/1807-3107bor-2024.vol38.0110
Eduardo Buozi Moffa, Samuel Santana Malheiros, Larissa Tavares Sampaio Silva, Delcio Ildefonso Branco, Regis Cléo Fernandes Grassia Junior, William Cunha Brandt, Flavia Goncalves, Valentim Adelino Ricardo Barao, Letícia Cristina Cidreira Boaro
{"title":"Antimicrobial activity of PMMA enriched with nano-clay loaded with metronidazole and chlorhexidine.","authors":"Eduardo Buozi Moffa, Samuel Santana Malheiros, Larissa Tavares Sampaio Silva, Delcio Ildefonso Branco, Regis Cléo Fernandes Grassia Junior, William Cunha Brandt, Flavia Goncalves, Valentim Adelino Ricardo Barao, Letícia Cristina Cidreira Boaro","doi":"10.1590/1807-3107bor-2024.vol38.0110","DOIUrl":null,"url":null,"abstract":"<p><p>Poly(methyl methacrylate) (PMMA) materials are highly susceptible to microbial colonization, predisposing patients to oral infections. To address this concern, we loaded PMMA samples with montmorillonite clay (MMT), a crystalline nanoparticle, in combination with chlorhexidine (CHX) or metronidazole (MET) targeting improved antimicrobial action. PMMA samples were prepared with or without MMT loaded with either CHX or MET, establishing the following groups: control (acrylic resin without the addition of nanoparticles), MMT/CHX (acrylic resin with 5% by weight of MMT loaded with CHX), and MMT/MET (acrylic resin with 5% by weight of MMT loaded with MET). Mechanical properties such flexural strength, flexural modulus, and Knoop hardness were evaluated using a universal testing machine. Antimicrobial efficacy was assessed via agar diffusion tests against Enterococcus faecalis and Porphyromonas gingivalis. The addition of MMT loaded with CHX did not affect the flexural strength and flexural modulus of PMMA compared to the control group (p > 0.05). However, MMT/MET reduced all mechanical properties of PMMA (p < 0.05). Both loaded-PMMA materials demonstrated antibacterial activity against E. faecalis but not against P. gingivalis. In conclusion, the incorporation of MMT/CHX into acrylic resin appears to be the most promising approach to combat microbial colonization while preserving PMMA mechanical properties. Future research should focus on optimizing material characteristics to enhance antimicrobial properties, paving the way for clinical applicability.</p>","PeriodicalId":9240,"journal":{"name":"Brazilian oral research","volume":"38 ","pages":"e110"},"PeriodicalIF":1.5000,"publicationDate":"2024-12-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11654885/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Brazilian oral research","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1590/1807-3107bor-2024.vol38.0110","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/1/1 0:00:00","PubModel":"eCollection","JCR":"Q3","JCRName":"DENTISTRY, ORAL SURGERY & MEDICINE","Score":null,"Total":0}
引用次数: 0

Abstract

Poly(methyl methacrylate) (PMMA) materials are highly susceptible to microbial colonization, predisposing patients to oral infections. To address this concern, we loaded PMMA samples with montmorillonite clay (MMT), a crystalline nanoparticle, in combination with chlorhexidine (CHX) or metronidazole (MET) targeting improved antimicrobial action. PMMA samples were prepared with or without MMT loaded with either CHX or MET, establishing the following groups: control (acrylic resin without the addition of nanoparticles), MMT/CHX (acrylic resin with 5% by weight of MMT loaded with CHX), and MMT/MET (acrylic resin with 5% by weight of MMT loaded with MET). Mechanical properties such flexural strength, flexural modulus, and Knoop hardness were evaluated using a universal testing machine. Antimicrobial efficacy was assessed via agar diffusion tests against Enterococcus faecalis and Porphyromonas gingivalis. The addition of MMT loaded with CHX did not affect the flexural strength and flexural modulus of PMMA compared to the control group (p > 0.05). However, MMT/MET reduced all mechanical properties of PMMA (p < 0.05). Both loaded-PMMA materials demonstrated antibacterial activity against E. faecalis but not against P. gingivalis. In conclusion, the incorporation of MMT/CHX into acrylic resin appears to be the most promising approach to combat microbial colonization while preserving PMMA mechanical properties. Future research should focus on optimizing material characteristics to enhance antimicrobial properties, paving the way for clinical applicability.

求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
3.70
自引率
4.00%
发文量
107
审稿时长
12 weeks
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信