MD simulations for rational design of high-affinity HDAC4 inhibitors – Analysis of non-bonding interaction energies for building new compounds

IF 3.8 3区 生物学 Q2 BIOCHEMISTRY & MOLECULAR BIOLOGY
Varun Dewaker , Pratik Narain Srivastava , Utsab Debnath , Ajay Kumar Srivastava , Yenamandra S. Prabhakar
{"title":"MD simulations for rational design of high-affinity HDAC4 inhibitors – Analysis of non-bonding interaction energies for building new compounds","authors":"Varun Dewaker ,&nbsp;Pratik Narain Srivastava ,&nbsp;Utsab Debnath ,&nbsp;Ajay Kumar Srivastava ,&nbsp;Yenamandra S. Prabhakar","doi":"10.1016/j.abb.2024.110262","DOIUrl":null,"url":null,"abstract":"<div><div>This study investigates the contributions of non-bonding energy (NBE) to the efficacy of four HDAC4 co-crystallized inhibitors (<strong>HA3</strong>, <strong>9F4</strong>, <strong>EBE</strong>, and <strong>TFG</strong>) through 100ns Molecular Dynamics (MD) simulations. These inhibitors contain hydroxamic acid (<strong>HA3</strong>, <strong>9F4</strong>, <strong>EBE</strong>) or diol (<strong>TFG</strong>) as zinc-binding groups. In PDBs 2VQJ and 2VQM, the HDAC4 catalytic domain is in the 'open' conformation, while in PDBs 4CBT and 6FYZ, the same is in the 'closed' conformation. We identified <strong>HA3</strong> as a weaker inhibitor because of the unfavorable NBE contributions from its carbonyl fragment (<strong>FR3</strong>) and hydroxamic fragment (<strong>FR1</strong>). To enhance NBE efficacy, we designed novel <strong>HA3</strong> analogs (<strong>H01</strong>–<strong>H16</strong>) by introducing diverse fragments (–CF3, 2-hydroxyacetic acid, -NH-CH2-, 5-fluoro-2-phenyl pyrimidine, and chloroquinoline moieties). MD simulations revealed promising analogs (<strong>H02</strong>, <strong>H07</strong>, <strong>H08</strong>, <strong>H15</strong>) with strong NBEs and stable ligand-zinc retention (2.07–2.33 Å). These analogs exhibited strong relative binding free energies within their catalytic sites, highlighting their potential as novel HDAC4 inhibitors. The current study provides medicinal chemists with insights into non-covalent interactions, identifies key fragments for optimization, and offers a rational design strategy for developing more effective HDAC4 inhibitors.</div></div>","PeriodicalId":8174,"journal":{"name":"Archives of biochemistry and biophysics","volume":"764 ","pages":"Article 110262"},"PeriodicalIF":3.8000,"publicationDate":"2025-02-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Archives of biochemistry and biophysics","FirstCategoryId":"99","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0003986124003849","RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
引用次数: 0

Abstract

This study investigates the contributions of non-bonding energy (NBE) to the efficacy of four HDAC4 co-crystallized inhibitors (HA3, 9F4, EBE, and TFG) through 100ns Molecular Dynamics (MD) simulations. These inhibitors contain hydroxamic acid (HA3, 9F4, EBE) or diol (TFG) as zinc-binding groups. In PDBs 2VQJ and 2VQM, the HDAC4 catalytic domain is in the 'open' conformation, while in PDBs 4CBT and 6FYZ, the same is in the 'closed' conformation. We identified HA3 as a weaker inhibitor because of the unfavorable NBE contributions from its carbonyl fragment (FR3) and hydroxamic fragment (FR1). To enhance NBE efficacy, we designed novel HA3 analogs (H01H16) by introducing diverse fragments (–CF3, 2-hydroxyacetic acid, -NH-CH2-, 5-fluoro-2-phenyl pyrimidine, and chloroquinoline moieties). MD simulations revealed promising analogs (H02, H07, H08, H15) with strong NBEs and stable ligand-zinc retention (2.07–2.33 Å). These analogs exhibited strong relative binding free energies within their catalytic sites, highlighting their potential as novel HDAC4 inhibitors. The current study provides medicinal chemists with insights into non-covalent interactions, identifies key fragments for optimization, and offers a rational design strategy for developing more effective HDAC4 inhibitors.

Abstract Image

高亲和HDAC4抑制剂合理设计的MD模拟——构建新化合物的非键相互作用能分析。
本研究通过100ns分子动力学(MD)模拟研究了非键能(NBE)对四种HDAC4共晶抑制剂(HA3、9F4、EBE和TFG)的影响。这些抑制剂含有羟肟酸(HA3, 9F4, EBE)或二醇(TFG)作为锌结合基团。在PDBs 2VQJ和2VQM中,HDAC4催化结构域为“开放”构象,而在PDBs 4CBT和6FYZ中,HDAC4催化结构域为“封闭”构象。我们发现HA3是一种较弱的抑制剂,因为它的羰基片段(FR3)和羟肟片段(FR1)对NBE有不利的贡献。为了提高NBE的疗效,我们设计了新的HA3类似物(H01-H16),通过引入不同的片段(- cf3, 2-羟基乙酸,- nh - ch2 -, 5-氟-2-苯基嘧啶和氯喹啉部分)。MD模拟显示,类似物(H02, H07, H08, H15)具有较强的NBEs和稳定的配体锌保留率(2.07至2.33 Å)。这些类似物在其催化位点表现出较强的相对结合自由能,突出了它们作为新型HDAC4抑制剂的潜力。目前的研究为药物化学家提供了非共价相互作用的见解,确定了优化的关键片段,并为开发更有效的HDAC4抑制剂提供了合理的设计策略。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Archives of biochemistry and biophysics
Archives of biochemistry and biophysics 生物-生化与分子生物学
CiteScore
7.40
自引率
0.00%
发文量
245
审稿时长
26 days
期刊介绍: Archives of Biochemistry and Biophysics publishes quality original articles and reviews in the developing areas of biochemistry and biophysics. Research Areas Include: • Enzyme and protein structure, function, regulation. Folding, turnover, and post-translational processing • Biological oxidations, free radical reactions, redox signaling, oxygenases, P450 reactions • Signal transduction, receptors, membrane transport, intracellular signals. Cellular and integrated metabolism.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信