Farhad Bordbar, Amir Rigi, Mahsa Vafaei Mastanabad, Fattah Rohani, Elham Ghaedi, Shahad Mohammad Dhiaa, Fatemeh Asadi, Salar Momen Maragheh
{"title":"Investigating miR-9 and miR-222 in CSF and Plasma of Neuroblastoma Patients as Metastatic and Apoptotic-Related Markers.","authors":"Farhad Bordbar, Amir Rigi, Mahsa Vafaei Mastanabad, Fattah Rohani, Elham Ghaedi, Shahad Mohammad Dhiaa, Fatemeh Asadi, Salar Momen Maragheh","doi":"10.1007/s12013-024-01570-9","DOIUrl":null,"url":null,"abstract":"<p><p>Neuroblastoma is a cancer that occurs due to abnormal development of the sympathetic nervous system. The dysregulation of miR-9 and miR-222 plays a crucial role in neuroblastoma development. These microRNAs have a significant relationship with PTEN, caspase-9, and MMP14, which can potentially form the basis for the specific diagnosis and treatment of this disease. In our study, two neuroblastoma cell lines were divided into three groups based on whether they had been treated with miR-9, anti-miR-9, miR-222, or both. We evaluated various parameters in these groups, including migration (through a wound healing assay), apoptosis (using flow cytometry), and gene expression (through qRT-PCR). Additionally, we measured the expression levels of MMP14, miR-9, and miR-222 in plasma and CSF samples from neuroblastoma patients using ELISA and qRT-PCR. We found that patients with neuroblastoma had higher levels of MMP14 and miR-222 mRNA expression but lower levels of miR-9 mRNA expression. Furthermore, after treating the cell lines with anti-miR-9 and anti-miR-222, we observed increased levels of MMP14 expression, as well as PTEN and caspase-9. Additionally, the treatment with anti-miR-222 and anti-miR-9 led to an increase in the frequency of apoptosis and migration of cancer cells. Our research shows that the dysregulation of miR-9, miR-222, and MMP14 could be key indicators in the pathogenesis of neuroblastoma. We also found that up-regulation of miR-9 was associated with decreased disease severity, whereas up-regulation of miR-222 and MMP14 was linked to increased disease severity.</p>","PeriodicalId":510,"journal":{"name":"Cell Biochemistry and Biophysics","volume":" ","pages":""},"PeriodicalIF":1.8000,"publicationDate":"2024-12-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Cell Biochemistry and Biophysics","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1007/s12013-024-01570-9","RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
Neuroblastoma is a cancer that occurs due to abnormal development of the sympathetic nervous system. The dysregulation of miR-9 and miR-222 plays a crucial role in neuroblastoma development. These microRNAs have a significant relationship with PTEN, caspase-9, and MMP14, which can potentially form the basis for the specific diagnosis and treatment of this disease. In our study, two neuroblastoma cell lines were divided into three groups based on whether they had been treated with miR-9, anti-miR-9, miR-222, or both. We evaluated various parameters in these groups, including migration (through a wound healing assay), apoptosis (using flow cytometry), and gene expression (through qRT-PCR). Additionally, we measured the expression levels of MMP14, miR-9, and miR-222 in plasma and CSF samples from neuroblastoma patients using ELISA and qRT-PCR. We found that patients with neuroblastoma had higher levels of MMP14 and miR-222 mRNA expression but lower levels of miR-9 mRNA expression. Furthermore, after treating the cell lines with anti-miR-9 and anti-miR-222, we observed increased levels of MMP14 expression, as well as PTEN and caspase-9. Additionally, the treatment with anti-miR-222 and anti-miR-9 led to an increase in the frequency of apoptosis and migration of cancer cells. Our research shows that the dysregulation of miR-9, miR-222, and MMP14 could be key indicators in the pathogenesis of neuroblastoma. We also found that up-regulation of miR-9 was associated with decreased disease severity, whereas up-regulation of miR-222 and MMP14 was linked to increased disease severity.
期刊介绍:
Cell Biochemistry and Biophysics (CBB) aims to publish papers on the nature of the biochemical and biophysical mechanisms underlying the structure, control and function of cellular systems
The reports should be within the framework of modern biochemistry and chemistry, biophysics and cell physiology, physics and engineering, molecular and structural biology. The relationship between molecular structure and function under investigation is emphasized.
Examples of subject areas that CBB publishes are:
· biochemical and biophysical aspects of cell structure and function;
· interactions of cells and their molecular/macromolecular constituents;
· innovative developments in genetic and biomolecular engineering;
· computer-based analysis of tissues, cells, cell networks, organelles, and molecular/macromolecular assemblies;
· photometric, spectroscopic, microscopic, mechanical, and electrical methodologies/techniques in analytical cytology, cytometry and innovative instrument design
For articles that focus on computational aspects, authors should be clear about which docking and molecular dynamics algorithms or software packages are being used as well as details on the system parameterization, simulations conditions etc. In addition, docking calculations (virtual screening, QSAR, etc.) should be validated either by experimental studies or one or more reliable theoretical cross-validation methods.