Fetal Tracheal Occlusion Corelates with Normalized YAP Expression and Alveolar Epithelial Differentiation in CDH.

IF 5.9 2区 医学 Q1 BIOCHEMISTRY & MOLECULAR BIOLOGY
Ophelia Aubert, Yuichiro Miyake, Gaurang M Amonkar, Olivia M Dinwoodie, Brian M Varisco, Mario Marotta, Caiqi Zhao, Richard Wagner, Ya-Wen Chen, Alessandra Moscatello, Caterina Tiozzo, Xaralabos Varelas, Paul H Lerou, Jose L Peiro, Richard Keijzer, Xingbin Ai
{"title":"Fetal Tracheal Occlusion Corelates with Normalized YAP Expression and Alveolar Epithelial Differentiation in CDH.","authors":"Ophelia Aubert, Yuichiro Miyake, Gaurang M Amonkar, Olivia M Dinwoodie, Brian M Varisco, Mario Marotta, Caiqi Zhao, Richard Wagner, Ya-Wen Chen, Alessandra Moscatello, Caterina Tiozzo, Xaralabos Varelas, Paul H Lerou, Jose L Peiro, Richard Keijzer, Xingbin Ai","doi":"10.1165/rcmb.2024-0323OC","DOIUrl":null,"url":null,"abstract":"<p><p>Congenital diaphragmatic hernia (CDH) is characterized by incomplete closure of the diaphragm. While the ensuing compression to the fetal lung causes lung hypoplasia, specific cellular phenotypes and developmental signaling defects in the alveolar epithelium in CDH are not fully understood. Employing lung samples from human CDH, a surgical lamb model and a nitrogen rat model, we investigate whether lung compression impairs alveolar epithelial differentiation and Yes-associated protein (YAP)-mediated mechanosensing. We showed that CDH in humans and lambs caused defective alveolar epithelial differentiation manifested by more abundant ATII cells, fewer ATI cells, and the emergence of cells expressing both ATI and ATII markers. Associated with the alveolar epithelial defects, we found a decrease in the level and nuclear localization of YAP. Reduced nuclear YAP and abnormal distal lung development were evident as early as 21 weeks in gestation in human CDH. In addition, rat fetuses with CDH also showed diminished nuclear YAP and mor abundant ATII cells. In contrast, the littermates without the hernia had no such alveolar phenotypes. Furthermore, fetal tracheal occlusion (TO) in the surgical lamb model of CDH fully normalized nuclear YAP and rescued alveolar epithelial defects in a gestational age-dependent manner. Taken together, our findings across species indicate that lung compression in CDH is sufficient to disrupt alveolar epithelial differentiation and impair YAP signaling. TO can restore nuclear YAP and rescue the alveolar defects in CDH, depending on the timing and the duration of this prenatal surgical intervention. This article is open access and distributed under the terms of the Creative Commons Attribution Non-Commercial No Derivatives License 4.0 (http://creativecommons.org/licenses/by-nc-nd/4.0/).</p>","PeriodicalId":7655,"journal":{"name":"American Journal of Respiratory Cell and Molecular Biology","volume":" ","pages":""},"PeriodicalIF":5.9000,"publicationDate":"2024-12-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"American Journal of Respiratory Cell and Molecular Biology","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1165/rcmb.2024-0323OC","RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
引用次数: 0

Abstract

Congenital diaphragmatic hernia (CDH) is characterized by incomplete closure of the diaphragm. While the ensuing compression to the fetal lung causes lung hypoplasia, specific cellular phenotypes and developmental signaling defects in the alveolar epithelium in CDH are not fully understood. Employing lung samples from human CDH, a surgical lamb model and a nitrogen rat model, we investigate whether lung compression impairs alveolar epithelial differentiation and Yes-associated protein (YAP)-mediated mechanosensing. We showed that CDH in humans and lambs caused defective alveolar epithelial differentiation manifested by more abundant ATII cells, fewer ATI cells, and the emergence of cells expressing both ATI and ATII markers. Associated with the alveolar epithelial defects, we found a decrease in the level and nuclear localization of YAP. Reduced nuclear YAP and abnormal distal lung development were evident as early as 21 weeks in gestation in human CDH. In addition, rat fetuses with CDH also showed diminished nuclear YAP and mor abundant ATII cells. In contrast, the littermates without the hernia had no such alveolar phenotypes. Furthermore, fetal tracheal occlusion (TO) in the surgical lamb model of CDH fully normalized nuclear YAP and rescued alveolar epithelial defects in a gestational age-dependent manner. Taken together, our findings across species indicate that lung compression in CDH is sufficient to disrupt alveolar epithelial differentiation and impair YAP signaling. TO can restore nuclear YAP and rescue the alveolar defects in CDH, depending on the timing and the duration of this prenatal surgical intervention. This article is open access and distributed under the terms of the Creative Commons Attribution Non-Commercial No Derivatives License 4.0 (http://creativecommons.org/licenses/by-nc-nd/4.0/).

求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
11.20
自引率
3.10%
发文量
370
审稿时长
3-8 weeks
期刊介绍: The American Journal of Respiratory Cell and Molecular Biology publishes papers that report significant and original observations in the area of pulmonary biology. The focus of the Journal includes, but is not limited to, cellular, biochemical, molecular, developmental, genetic, and immunologic studies of lung cells and molecules.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信