Thomas Edwards, Jose M Gonzalez, Sofia Hernandez-Torres, Emilee Venn, Rebekah Ford, Nicole Ewer, Guillaume L Hoareau, Lawrence Holland, Victor A Convertino, Eric Snider
{"title":"Predicting blood loss volume in a canine model of hemorrhagic shock using arterial waveform machine learning analysis.","authors":"Thomas Edwards, Jose M Gonzalez, Sofia Hernandez-Torres, Emilee Venn, Rebekah Ford, Nicole Ewer, Guillaume L Hoareau, Lawrence Holland, Victor A Convertino, Eric Snider","doi":"10.2460/ajvr.24.09.0256","DOIUrl":null,"url":null,"abstract":"<p><strong>Objective: </strong>To determine if the compensatory reserve algorithm validated in humans can be applied to canines. Our secondary objective was to determine if a simpler waveform analysis could predict the percentage of blood loss volume.</p><p><strong>Methods: </strong>6 purpose-bred, anesthetized dogs underwent 5 rounds of controlled hemorrhage and resuscitation while continuously recording invasive arterial blood pressure waveforms in this prospective, experimental study. We calculated human compensatory reserve using deep learning (hCRM-DL) and machine learning (hCRM-ML) models previously developed with human data. We trained a metric to track blood loss volume using features extracted from canine (c) arterial waveforms as an input.</p><p><strong>Results: </strong>When applied to the 6 dogs, the hCRM-DL model (R2 = 0.38) more poorly fit a linear regression model against mean arterial pressure and had lower area under the receiver operating characteristic (AUROC; 0.60) compared to the hCRM-ML model (R2 = 0.61; AUROC, 0.73). Conversely, the arterial waveform analysis for canine blood loss volume metric (cBLVM) predicted blood loss in dogs experiencing controlled hemorrhagic shock more accurately (R2 = 0.74). The cBLVM model for predicting blood loss volume had the highest AUROC score (0.81) and was the earliest indicator of hemorrhage onset.</p><p><strong>Conclusions: </strong>The hCRM-ML and hCRM-DL algorithms did not translate to accurate prediction of the onset of hemorrhagic shock in dogs. However, the arterial waveform feature analysis-derived cBLVM might provide decision support to resuscitate dogs with hemorrhagic shock.</p><p><strong>Clinical relevance: </strong>Canine BLVM may be useful in estimating blood loss in dogs, which can guide resuscitation strategies for these patients.</p>","PeriodicalId":7754,"journal":{"name":"American journal of veterinary research","volume":" ","pages":"1-10"},"PeriodicalIF":1.3000,"publicationDate":"2024-12-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"American journal of veterinary research","FirstCategoryId":"97","ListUrlMain":"https://doi.org/10.2460/ajvr.24.09.0256","RegionNum":3,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"VETERINARY SCIENCES","Score":null,"Total":0}
引用次数: 0
Abstract
Objective: To determine if the compensatory reserve algorithm validated in humans can be applied to canines. Our secondary objective was to determine if a simpler waveform analysis could predict the percentage of blood loss volume.
Methods: 6 purpose-bred, anesthetized dogs underwent 5 rounds of controlled hemorrhage and resuscitation while continuously recording invasive arterial blood pressure waveforms in this prospective, experimental study. We calculated human compensatory reserve using deep learning (hCRM-DL) and machine learning (hCRM-ML) models previously developed with human data. We trained a metric to track blood loss volume using features extracted from canine (c) arterial waveforms as an input.
Results: When applied to the 6 dogs, the hCRM-DL model (R2 = 0.38) more poorly fit a linear regression model against mean arterial pressure and had lower area under the receiver operating characteristic (AUROC; 0.60) compared to the hCRM-ML model (R2 = 0.61; AUROC, 0.73). Conversely, the arterial waveform analysis for canine blood loss volume metric (cBLVM) predicted blood loss in dogs experiencing controlled hemorrhagic shock more accurately (R2 = 0.74). The cBLVM model for predicting blood loss volume had the highest AUROC score (0.81) and was the earliest indicator of hemorrhage onset.
Conclusions: The hCRM-ML and hCRM-DL algorithms did not translate to accurate prediction of the onset of hemorrhagic shock in dogs. However, the arterial waveform feature analysis-derived cBLVM might provide decision support to resuscitate dogs with hemorrhagic shock.
Clinical relevance: Canine BLVM may be useful in estimating blood loss in dogs, which can guide resuscitation strategies for these patients.
期刊介绍:
The American Journal of Veterinary Research supports the collaborative exchange of information between researchers and clinicians by publishing novel research findings that bridge the gulf between basic research and clinical practice or that help to translate laboratory research and preclinical studies to the development of clinical trials and clinical practice. The journal welcomes submission of high-quality original studies and review articles in a wide range of scientific fields, including anatomy, anesthesiology, animal welfare, behavior, epidemiology, genetics, heredity, infectious disease, molecular biology, oncology, pharmacology, pathogenic mechanisms, physiology, surgery, theriogenology, toxicology, and vaccinology. Species of interest include production animals, companion animals, equids, exotic animals, birds, reptiles, and wild and marine animals. Reports of laboratory animal studies and studies involving the use of animals as experimental models of human diseases are considered only when the study results are of demonstrable benefit to the species used in the research or to another species of veterinary interest. Other fields of interest or animals species are not necessarily excluded from consideration, but such reports must focus on novel research findings. Submitted papers must make an original and substantial contribution to the veterinary medicine knowledge base; preliminary studies are not appropriate.