Bei Wang, Hao Cheng, Zhongsheng Ji, Zijun Jiang, Rong Wang, Yang Ding, Jiang Ni
{"title":"Synergistic Target-Attacking Tumor Cells and M2 Macrophages via a Triple-Responsive Nanoassembly for Complete Metastasis Blocking.","authors":"Bei Wang, Hao Cheng, Zhongsheng Ji, Zijun Jiang, Rong Wang, Yang Ding, Jiang Ni","doi":"10.1002/adhm.202304096","DOIUrl":null,"url":null,"abstract":"<p><p>Collaboration of cancerous cells and microenvironment is the root for tumor spreading, leading to difficulty in complete metastasis blockage via mono-intervention. Herein, a triple-responsive nanoassembly is designed for orienting tumor cells and migration-driving M2 tumor associated macrophages (TAMs) in microenvironment for efficient anti-metastatic therapy. Structurally, a reactive oxygen species (ROS)-responsive crosslinked short-chain polyquaternium is synthesized to bridge graphene oxide (GO) scaffold with apolipoprotein A-I crown via borate-crosslinking, electrostatic adherence, and coordinative coupling. The protein-crowning polymeric GO nanoparticles could give multimodal shielding and triple-responsive release of doxorubicin and Snail-targeted siRNA. Tailor-made apolipoprotein A-I crown fulfills nanoparticles synergistically attacking tumor cells and M2 TAMs via binding with overexpressed scavenger receptors. The findings witness the targeted accumulation and potent cytotoxicity of the hybrid nanoparticles for M2 TAMs and tumor cells; especially, elimination of M2 TAMs in tumor microenvironment holds back Snail-enhancing transforming growth factor (TGF)-β signal pathway, which collaborates with Snail silencing in tumor cells to reverse epithelial mesenchymal transition (EMT) and metastasis-promoting niche. Collectively, the synergistic targeting therapeutic platform could provide a promising solution for metastatic tumor treatment.</p>","PeriodicalId":113,"journal":{"name":"Advanced Healthcare Materials","volume":" ","pages":"e2304096"},"PeriodicalIF":10.0000,"publicationDate":"2024-12-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Advanced Healthcare Materials","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1002/adhm.202304096","RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, BIOMEDICAL","Score":null,"Total":0}
引用次数: 0
Abstract
Collaboration of cancerous cells and microenvironment is the root for tumor spreading, leading to difficulty in complete metastasis blockage via mono-intervention. Herein, a triple-responsive nanoassembly is designed for orienting tumor cells and migration-driving M2 tumor associated macrophages (TAMs) in microenvironment for efficient anti-metastatic therapy. Structurally, a reactive oxygen species (ROS)-responsive crosslinked short-chain polyquaternium is synthesized to bridge graphene oxide (GO) scaffold with apolipoprotein A-I crown via borate-crosslinking, electrostatic adherence, and coordinative coupling. The protein-crowning polymeric GO nanoparticles could give multimodal shielding and triple-responsive release of doxorubicin and Snail-targeted siRNA. Tailor-made apolipoprotein A-I crown fulfills nanoparticles synergistically attacking tumor cells and M2 TAMs via binding with overexpressed scavenger receptors. The findings witness the targeted accumulation and potent cytotoxicity of the hybrid nanoparticles for M2 TAMs and tumor cells; especially, elimination of M2 TAMs in tumor microenvironment holds back Snail-enhancing transforming growth factor (TGF)-β signal pathway, which collaborates with Snail silencing in tumor cells to reverse epithelial mesenchymal transition (EMT) and metastasis-promoting niche. Collectively, the synergistic targeting therapeutic platform could provide a promising solution for metastatic tumor treatment.
期刊介绍:
Advanced Healthcare Materials, a distinguished member of the esteemed Advanced portfolio, has been dedicated to disseminating cutting-edge research on materials, devices, and technologies for enhancing human well-being for over ten years. As a comprehensive journal, it encompasses a wide range of disciplines such as biomaterials, biointerfaces, nanomedicine and nanotechnology, tissue engineering, and regenerative medicine.