Tailoring osteoimmunity and hemostasis using 3D-Printed nano-photocatalytic bactericidal scaffold for augmented bone regeneration.

IF 12.8 1区 医学 Q1 ENGINEERING, BIOMEDICAL
Biomaterials Pub Date : 2025-05-01 Epub Date: 2024-12-06 DOI:10.1016/j.biomaterials.2024.122991
Sayan Deb Dutta, Jin Hexiu, Md Moniruzzaman, Tejal V Patil, Rumi Acharya, Jong Sung Kim, Ki-Taek Lim
{"title":"Tailoring osteoimmunity and hemostasis using 3D-Printed nano-photocatalytic bactericidal scaffold for augmented bone regeneration.","authors":"Sayan Deb Dutta, Jin Hexiu, Md Moniruzzaman, Tejal V Patil, Rumi Acharya, Jong Sung Kim, Ki-Taek Lim","doi":"10.1016/j.biomaterials.2024.122991","DOIUrl":null,"url":null,"abstract":"<p><p>Bone hemorrhage, infection, and large bone defects following surgical treatment of traumatic bone injury have raised potential concerns, underscoring the urgent need to develop multifunctional therapeutic platforms that can effectively address traumatic bone regeneration. Advancements in three-dimensional (3D) printing technology have propelled the development of several engineering disciplines, such as tissue engineering. Nevertheless, 3D-printed frameworks with conventional materials often lack multifunctional capabilities to promote specific activities for diverse regeneration purposes. In this study, we developed a highly oxidized two-dimensional (2D) graphitic carbon nitride (Ox-gCN) as a nano-photocatalyst to reinforce alginate/gelatin (ALG)-based hydrogel scaffolds (ALG/CN) to achieve an anti-inflammatory and osteo-immunomodulatory niche with superior hemostatic ability for traumatic bone injury repair. Sulfuric acid oxidation enhances the oxygen-containing functional groups of the g-CN surface and promotes cell adhesion and differentiation of human bone marrow-derived mesenchymal stem cells (hBMSCs) in vitro. Moreover, the excellent visible light-activated photocatalytic characteristics of the ALG/CN scaffold were used in antibacterial studies. In addition, the ALG/CN bio/nanocomposite scaffold facilitates M2 polarization of macrophages than did pristine ALG scaffolds. Furthermore, ALG/CN scaffold induced hBMSCs differentiation by upregulating ERK and MAPKs phosphorylation during osteo-immunomodulation. In a rat calvaria defect model, the fabricated ALG/CN scaffolds induced new bone formation through collagen deposition and activation of osteocalcin proteins without inflammation in vivo. These results highlight the potential of 3D-printed functionalized 2D carbon nitrides in regulating the bone immune microenvironment, which may be beneficial for developing advanced tissue constructs, especially for traumatic bone regeneration in clinical settings.</p>","PeriodicalId":254,"journal":{"name":"Biomaterials","volume":"316 ","pages":"122991"},"PeriodicalIF":12.8000,"publicationDate":"2025-05-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Biomaterials","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1016/j.biomaterials.2024.122991","RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/12/6 0:00:00","PubModel":"Epub","JCR":"Q1","JCRName":"ENGINEERING, BIOMEDICAL","Score":null,"Total":0}
引用次数: 0

Abstract

Bone hemorrhage, infection, and large bone defects following surgical treatment of traumatic bone injury have raised potential concerns, underscoring the urgent need to develop multifunctional therapeutic platforms that can effectively address traumatic bone regeneration. Advancements in three-dimensional (3D) printing technology have propelled the development of several engineering disciplines, such as tissue engineering. Nevertheless, 3D-printed frameworks with conventional materials often lack multifunctional capabilities to promote specific activities for diverse regeneration purposes. In this study, we developed a highly oxidized two-dimensional (2D) graphitic carbon nitride (Ox-gCN) as a nano-photocatalyst to reinforce alginate/gelatin (ALG)-based hydrogel scaffolds (ALG/CN) to achieve an anti-inflammatory and osteo-immunomodulatory niche with superior hemostatic ability for traumatic bone injury repair. Sulfuric acid oxidation enhances the oxygen-containing functional groups of the g-CN surface and promotes cell adhesion and differentiation of human bone marrow-derived mesenchymal stem cells (hBMSCs) in vitro. Moreover, the excellent visible light-activated photocatalytic characteristics of the ALG/CN scaffold were used in antibacterial studies. In addition, the ALG/CN bio/nanocomposite scaffold facilitates M2 polarization of macrophages than did pristine ALG scaffolds. Furthermore, ALG/CN scaffold induced hBMSCs differentiation by upregulating ERK and MAPKs phosphorylation during osteo-immunomodulation. In a rat calvaria defect model, the fabricated ALG/CN scaffolds induced new bone formation through collagen deposition and activation of osteocalcin proteins without inflammation in vivo. These results highlight the potential of 3D-printed functionalized 2D carbon nitrides in regulating the bone immune microenvironment, which may be beneficial for developing advanced tissue constructs, especially for traumatic bone regeneration in clinical settings.

求助全文
约1分钟内获得全文 求助全文
来源期刊
Biomaterials
Biomaterials 工程技术-材料科学:生物材料
CiteScore
26.00
自引率
2.90%
发文量
565
审稿时长
46 days
期刊介绍: Biomaterials is an international journal covering the science and clinical application of biomaterials. A biomaterial is now defined as a substance that has been engineered to take a form which, alone or as part of a complex system, is used to direct, by control of interactions with components of living systems, the course of any therapeutic or diagnostic procedure. It is the aim of the journal to provide a peer-reviewed forum for the publication of original papers and authoritative review and opinion papers dealing with the most important issues facing the use of biomaterials in clinical practice. The scope of the journal covers the wide range of physical, biological and chemical sciences that underpin the design of biomaterials and the clinical disciplines in which they are used. These sciences include polymer synthesis and characterization, drug and gene vector design, the biology of the host response, immunology and toxicology and self assembly at the nanoscale. Clinical applications include the therapies of medical technology and regenerative medicine in all clinical disciplines, and diagnostic systems that reply on innovative contrast and sensing agents. The journal is relevant to areas such as cancer diagnosis and therapy, implantable devices, drug delivery systems, gene vectors, bionanotechnology and tissue engineering.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信