Theoretical Study on the Spectroscopic Properties and Line Intensities of the O2+ Cation.

IF 2.7 2区 化学 Q3 CHEMISTRY, PHYSICAL
Hao Chen, Guosen Wang, Xinlu Cheng, Hong Zhang
{"title":"Theoretical Study on the Spectroscopic Properties and Line Intensities of the O<sub>2</sub><sup>+</sup> Cation.","authors":"Hao Chen, Guosen Wang, Xinlu Cheng, Hong Zhang","doi":"10.1021/acs.jpca.4c06839","DOIUrl":null,"url":null,"abstract":"<p><p>O<sub>2</sub><sup>+</sup> cation, as one of the major gas components in the near space environment, has attracted significant attention due to its spectroscopic properties. In this study, we systematically investigate the spectroscopic properties of the O<sub>2</sub><sup>+</sup> cation using ab initio methods. The potential energy curves and transition dipole moments of O<sub>2</sub><sup>+</sup> were obtained using the icMRCI + Q method combined with the ACV5Z-DK basis set. Subsequently, the vibrational and rotational energy levels, as well as the corresponding spectroscopic constants for both ground and excited states, were determined by solving the one-dimensional radial Schrödinger equation. Based on the vibrational and rotational energy levels of bound electronic states, the internal partition function of O<sub>2</sub><sup>+</sup> was computed over the temperature range of 100-10,000 K. Utilizing the precise potential energy functions, transition dipole moment functions, and internal partition functions, the line intensities for the First Negative Band System (a<sup>4</sup>Π<sub>u</sub>-b<sup>4</sup>Σ<sub>g</sub><sup>-</sup>) and the Second Negative Band System (X<sup>2</sup>Π<sub>g</sub>-A<sup>2</sup>Π<sub>u</sub>) were calculated. For the first negative band system, the spectral line intensity of Δν = 1 is maximized at temperatures ranging from 100 to 7000 K. In the case of the second negative band system, the strongest vibrational band shifts with increasing temperature. We also discuss the impact of temperature on spectral lines; at higher temperatures, a greater number of energy levels are populated, allowing for the observation of more spectral lines. These findings are significant for understanding the spectral behavior of high-temperature nonequilibrium plasmas and their role during spacecraft reentry, providing a theoretical basis for experimental research.</p>","PeriodicalId":59,"journal":{"name":"The Journal of Physical Chemistry A","volume":" ","pages":""},"PeriodicalIF":2.7000,"publicationDate":"2024-12-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"The Journal of Physical Chemistry A","FirstCategoryId":"1","ListUrlMain":"https://doi.org/10.1021/acs.jpca.4c06839","RegionNum":2,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
引用次数: 0

Abstract

O2+ cation, as one of the major gas components in the near space environment, has attracted significant attention due to its spectroscopic properties. In this study, we systematically investigate the spectroscopic properties of the O2+ cation using ab initio methods. The potential energy curves and transition dipole moments of O2+ were obtained using the icMRCI + Q method combined with the ACV5Z-DK basis set. Subsequently, the vibrational and rotational energy levels, as well as the corresponding spectroscopic constants for both ground and excited states, were determined by solving the one-dimensional radial Schrödinger equation. Based on the vibrational and rotational energy levels of bound electronic states, the internal partition function of O2+ was computed over the temperature range of 100-10,000 K. Utilizing the precise potential energy functions, transition dipole moment functions, and internal partition functions, the line intensities for the First Negative Band System (a4Πu-b4Σg-) and the Second Negative Band System (X2Πg-A2Πu) were calculated. For the first negative band system, the spectral line intensity of Δν = 1 is maximized at temperatures ranging from 100 to 7000 K. In the case of the second negative band system, the strongest vibrational band shifts with increasing temperature. We also discuss the impact of temperature on spectral lines; at higher temperatures, a greater number of energy levels are populated, allowing for the observation of more spectral lines. These findings are significant for understanding the spectral behavior of high-temperature nonequilibrium plasmas and their role during spacecraft reentry, providing a theoretical basis for experimental research.

求助全文
约1分钟内获得全文 求助全文
来源期刊
The Journal of Physical Chemistry A
The Journal of Physical Chemistry A 化学-物理:原子、分子和化学物理
CiteScore
5.20
自引率
10.30%
发文量
922
审稿时长
1.3 months
期刊介绍: The Journal of Physical Chemistry A is devoted to reporting new and original experimental and theoretical basic research of interest to physical chemists, biophysical chemists, and chemical physicists.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信