Interaction of lysozyme with solid supports cryogels containing imidazole functional group.

IF 2.8 3区 医学 Q2 BIOCHEMICAL RESEARCH METHODS
Journal of Chromatography B Pub Date : 2025-01-15 Epub Date: 2024-12-06 DOI:10.1016/j.jchromb.2024.124405
Radwan Ahmed Tarish Abdullah, Koray Şarkaya
{"title":"Interaction of lysozyme with solid supports cryogels containing imidazole functional group.","authors":"Radwan Ahmed Tarish Abdullah, Koray Şarkaya","doi":"10.1016/j.jchromb.2024.124405","DOIUrl":null,"url":null,"abstract":"<p><p>This paper details the preparation of acrylamide-based supermacroporous cryogels and their application in removing lysozyme from aqueous solutions. N-Vinyl imidazole was copolymerized with acrylamide as a comonomer to impart pseudo-specificity to the cryogels, forming poly(AAm-VIM) cryogel. Characterization studies to assess the physical and chemical properties of the synthesized cryogels involved swelling tests, Fourier Transform Infrared Spectroscopy (FTIR), elemental analysis, Field Emission Scanning Electron Microscopy (FESEM), and Thermogravimetric Analysis (TGA-DTA). To ascertain the optimal conditions for the adsorption process, pH 9.0 (TRIS buffer) was selected for lysozyme adsorption, using the parametres such as initial concentration screening, ionic strength, temperature, and column flow rate. The Langmuir and Freundlich isotherm models were analyzed to assess the adsorption parameters mathematically. The regression coefficient results indicated that lysozyme adsorption aligned more closely with the Langmuir isotherm model. The adsorption process is considered to be thermodynamically physical and spontaneous. SDS-PAGE analysis assessed the purity of lysozyme isolated from an aqueous solution using a poly(AAm-VIM) cryogel column. The inertness and regeneration capacity of poly(AAm-VIM) cryogel affinity columns were assessed using reusability studies conducted during the adsorption-desorption cycle.</p>","PeriodicalId":348,"journal":{"name":"Journal of Chromatography B","volume":"1251 ","pages":"124405"},"PeriodicalIF":2.8000,"publicationDate":"2025-01-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Chromatography B","FirstCategoryId":"1","ListUrlMain":"https://doi.org/10.1016/j.jchromb.2024.124405","RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/12/6 0:00:00","PubModel":"Epub","JCR":"Q2","JCRName":"BIOCHEMICAL RESEARCH METHODS","Score":null,"Total":0}
引用次数: 0

Abstract

This paper details the preparation of acrylamide-based supermacroporous cryogels and their application in removing lysozyme from aqueous solutions. N-Vinyl imidazole was copolymerized with acrylamide as a comonomer to impart pseudo-specificity to the cryogels, forming poly(AAm-VIM) cryogel. Characterization studies to assess the physical and chemical properties of the synthesized cryogels involved swelling tests, Fourier Transform Infrared Spectroscopy (FTIR), elemental analysis, Field Emission Scanning Electron Microscopy (FESEM), and Thermogravimetric Analysis (TGA-DTA). To ascertain the optimal conditions for the adsorption process, pH 9.0 (TRIS buffer) was selected for lysozyme adsorption, using the parametres such as initial concentration screening, ionic strength, temperature, and column flow rate. The Langmuir and Freundlich isotherm models were analyzed to assess the adsorption parameters mathematically. The regression coefficient results indicated that lysozyme adsorption aligned more closely with the Langmuir isotherm model. The adsorption process is considered to be thermodynamically physical and spontaneous. SDS-PAGE analysis assessed the purity of lysozyme isolated from an aqueous solution using a poly(AAm-VIM) cryogel column. The inertness and regeneration capacity of poly(AAm-VIM) cryogel affinity columns were assessed using reusability studies conducted during the adsorption-desorption cycle.

溶菌酶与含咪唑官能团的固体载体的相互作用。
本文详细介绍了丙烯酰胺基超大孔冷冻剂的制备及其在溶菌酶脱除中的应用。n -乙烯基咪唑作为共聚单体与丙烯酰胺共聚,赋予低温凝胶伪特异性,形成聚(AAm-VIM)低温凝胶。表征研究包括膨胀测试、傅里叶变换红外光谱(FTIR)、元素分析、场发射扫描电子显微镜(FESEM)和热重分析(TGA-DTA),以评估合成的冷冻液的物理和化学性质。为确定最佳吸附条件,选取pH 9.0 (TRIS缓冲液)进行溶菌酶吸附,考察初始浓度筛选、离子强度、温度、柱流速等参数。分析了Langmuir和Freundlich等温线模型,对吸附参数进行了数学计算。回归系数结果表明,溶菌酶吸附更符合Langmuir等温线模型。吸附过程被认为是热力学、物理和自发的。SDS-PAGE分析使用聚(AAm-VIM)低温凝胶柱评估从水溶液中分离的溶菌酶的纯度。通过在吸附-解吸循环中进行的可重复使用性研究,评估了聚AAm-VIM低温凝胶亲和柱的惰性和再生能力。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Journal of Chromatography B
Journal of Chromatography B 医学-分析化学
CiteScore
5.60
自引率
3.30%
发文量
306
审稿时长
44 days
期刊介绍: The Journal of Chromatography B publishes papers on developments in separation science relevant to biology and biomedical research including both fundamental advances and applications. Analytical techniques which may be considered include the various facets of chromatography, electrophoresis and related methods, affinity and immunoaffinity-based methodologies, hyphenated and other multi-dimensional techniques, and microanalytical approaches. The journal also considers articles reporting developments in sample preparation, detection techniques including mass spectrometry, and data handling and analysis. Developments related to preparative separations for the isolation and purification of components of biological systems may be published, including chromatographic and electrophoretic methods, affinity separations, field flow fractionation and other preparative approaches. Applications to the analysis of biological systems and samples will be considered when the analytical science contains a significant element of novelty, e.g. a new approach to the separation of a compound, novel combination of analytical techniques, or significantly improved analytical performance.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信