{"title":"Descriptor-Free Collective Variables from Geometric Graph Neural Networks.","authors":"Jintu Zhang, Luigi Bonati, Enrico Trizio, Odin Zhang, Yu Kang, TingJun Hou, Michele Parrinello","doi":"10.1021/acs.jctc.4c01197","DOIUrl":null,"url":null,"abstract":"<p><p>Enhanced sampling simulations make the computational study of rare events feasible. A large family of such methods crucially depends on the definition of some collective variables (CVs) that could provide a low-dimensional representation of the relevant physics of the process. Recently, many methods have been proposed to semiautomatize the CV design by using machine learning tools to learn the variables directly from the simulation data. However, most methods are based on feedforward neural networks and require some user-defined physical descriptors. Here, we propose bypassing this step using a graph neural network to directly use the atomic coordinates as input for the CV model. This way, we achieve a fully automatic approach to CV determination that provides variables invariant under the relevant symmetries, especially the permutational one. Furthermore, we provide different analysis tools to favor the physical interpretation of the final CV. We prove the robustness of our approach using different methods from the literature for the optimization of the CV, and we prove its efficacy on several systems, including a small peptide, an ion dissociation in explicit solvent, and a simple chemical reaction.</p>","PeriodicalId":45,"journal":{"name":"Journal of Chemical Theory and Computation","volume":" ","pages":"10787-10797"},"PeriodicalIF":5.7000,"publicationDate":"2024-12-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Chemical Theory and Computation","FirstCategoryId":"92","ListUrlMain":"https://doi.org/10.1021/acs.jctc.4c01197","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/12/12 0:00:00","PubModel":"Epub","JCR":"Q2","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
引用次数: 0
Abstract
Enhanced sampling simulations make the computational study of rare events feasible. A large family of such methods crucially depends on the definition of some collective variables (CVs) that could provide a low-dimensional representation of the relevant physics of the process. Recently, many methods have been proposed to semiautomatize the CV design by using machine learning tools to learn the variables directly from the simulation data. However, most methods are based on feedforward neural networks and require some user-defined physical descriptors. Here, we propose bypassing this step using a graph neural network to directly use the atomic coordinates as input for the CV model. This way, we achieve a fully automatic approach to CV determination that provides variables invariant under the relevant symmetries, especially the permutational one. Furthermore, we provide different analysis tools to favor the physical interpretation of the final CV. We prove the robustness of our approach using different methods from the literature for the optimization of the CV, and we prove its efficacy on several systems, including a small peptide, an ion dissociation in explicit solvent, and a simple chemical reaction.
期刊介绍:
The Journal of Chemical Theory and Computation invites new and original contributions with the understanding that, if accepted, they will not be published elsewhere. Papers reporting new theories, methodology, and/or important applications in quantum electronic structure, molecular dynamics, and statistical mechanics are appropriate for submission to this Journal. Specific topics include advances in or applications of ab initio quantum mechanics, density functional theory, design and properties of new materials, surface science, Monte Carlo simulations, solvation models, QM/MM calculations, biomolecular structure prediction, and molecular dynamics in the broadest sense including gas-phase dynamics, ab initio dynamics, biomolecular dynamics, and protein folding. The Journal does not consider papers that are straightforward applications of known methods including DFT and molecular dynamics. The Journal favors submissions that include advances in theory or methodology with applications to compelling problems.