Yang Zhou, Yiqi He, Sisi Zhao, Simeng Qi, Lulu Wang, Yingchun Niu, Quan Xu, Chunming Xu, Juncheng Wang
{"title":"Multi-gradient energy-saving smart windows with thermo-response and multimodal thermal energy storage.","authors":"Yang Zhou, Yiqi He, Sisi Zhao, Simeng Qi, Lulu Wang, Yingchun Niu, Quan Xu, Chunming Xu, Juncheng Wang","doi":"10.1039/d4mh01259c","DOIUrl":null,"url":null,"abstract":"<p><p>Buildings, especially installed windows, account for a large proportion of global energy consumption. The research trend of smart windows leans towards multi-functional integration, concurrently achieving solar modulation and thermal management. However, sometimes a one-time performance switch cannot meet demands, making the design of multi-gradient adjustable smart windows particularly important. The combination of the temperature-responsive optical properties of hydroxypropyl cellulose (HPC), the high specific heat capability of water (sensible heat storage) and the solid-liquid phase transition of κ-carrageenan (latent heat storage) is proposed first and can be used to prepare the thermo-responsive hydrogel and multi-gradient energy-saving smart window with thermo-response and multimodal thermal energy storage (MGES smart window) quickly without long-term polymerization. The MGES smart window has excellent solar modulation capability (Δ<i>T</i><sub>lum</sub> = 82.72% and Δ<i>T</i><sub>sol</sub> = 68.65%) together with outstanding specific heat absorption ability (<i>c</i> = 4.2 kJ kg<sup>-1</sup> K<sup>-1</sup>) and phase transition heat (Δ<i>H</i> = 1.23 kJ kg<sup>-1</sup>), showing superior energy saving and conserving performance. In demonstrations, the MGES smart windows can reduce the surface and indoor temperature by more than 15 °C and 10.6 °C compared with normal windows. Simulations suggest that they can cut off 45.1% of building energy consumption. To sum up, the MGES smart windows realize multi-aspect adjustment of energy, opening up a new avenue for green buildings.</p>","PeriodicalId":87,"journal":{"name":"Materials Horizons","volume":" ","pages":""},"PeriodicalIF":12.2000,"publicationDate":"2024-12-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Materials Horizons","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.1039/d4mh01259c","RegionNum":2,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0
Abstract
Buildings, especially installed windows, account for a large proportion of global energy consumption. The research trend of smart windows leans towards multi-functional integration, concurrently achieving solar modulation and thermal management. However, sometimes a one-time performance switch cannot meet demands, making the design of multi-gradient adjustable smart windows particularly important. The combination of the temperature-responsive optical properties of hydroxypropyl cellulose (HPC), the high specific heat capability of water (sensible heat storage) and the solid-liquid phase transition of κ-carrageenan (latent heat storage) is proposed first and can be used to prepare the thermo-responsive hydrogel and multi-gradient energy-saving smart window with thermo-response and multimodal thermal energy storage (MGES smart window) quickly without long-term polymerization. The MGES smart window has excellent solar modulation capability (ΔTlum = 82.72% and ΔTsol = 68.65%) together with outstanding specific heat absorption ability (c = 4.2 kJ kg-1 K-1) and phase transition heat (ΔH = 1.23 kJ kg-1), showing superior energy saving and conserving performance. In demonstrations, the MGES smart windows can reduce the surface and indoor temperature by more than 15 °C and 10.6 °C compared with normal windows. Simulations suggest that they can cut off 45.1% of building energy consumption. To sum up, the MGES smart windows realize multi-aspect adjustment of energy, opening up a new avenue for green buildings.