Yang Zhou, Yiqi He, Sisi Zhao, Simeng Qi, Lulu Wang, Yingchun Niu, Quan Xu, Chunming Xu and Juncheng Wang
{"title":"Multi-gradient energy-saving smart windows with thermo-response and multimodal thermal energy storage†","authors":"Yang Zhou, Yiqi He, Sisi Zhao, Simeng Qi, Lulu Wang, Yingchun Niu, Quan Xu, Chunming Xu and Juncheng Wang","doi":"10.1039/D4MH01259C","DOIUrl":null,"url":null,"abstract":"<p >Buildings, especially installed windows, account for a large proportion of global energy consumption. The research trend of smart windows leans towards multi-functional integration, concurrently achieving solar modulation and thermal management. However, sometimes a one-time performance switch cannot meet demands, making the design of multi-gradient adjustable smart windows particularly important. The combination of the temperature-responsive optical properties of hydroxypropyl cellulose (HPC), the high specific heat capability of water (sensible heat storage) and the solid–liquid phase transition of κ-carrageenan (latent heat storage) is proposed first and can be used to prepare the thermo-responsive hydrogel and multi-gradient energy-saving smart window with thermo-response and multimodal thermal energy storage (MGES smart window) quickly without long-term polymerization. The MGES smart window has excellent solar modulation capability (Δ<em>T</em><small><sub>lum</sub></small> = 82.72% and Δ<em>T</em><small><sub>sol</sub></small> = 68.65%) together with outstanding specific heat absorption ability (<em>c</em> = 4.2 kJ kg<small><sup>−1</sup></small> K<small><sup>−1</sup></small>) and phase transition heat (Δ<em>H</em> = 1.23 kJ kg<small><sup>−1</sup></small>), showing superior energy saving and conserving performance. In demonstrations, the MGES smart windows can reduce the surface and indoor temperature by more than 15 °C and 10.6 °C compared with normal windows. Simulations suggest that they can cut off 45.1% of building energy consumption. To sum up, the MGES smart windows realize multi-aspect adjustment of energy, opening up a new avenue for green buildings.</p>","PeriodicalId":87,"journal":{"name":"Materials Horizons","volume":" 5","pages":" 1663-1674"},"PeriodicalIF":12.2000,"publicationDate":"2024-12-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Materials Horizons","FirstCategoryId":"88","ListUrlMain":"https://pubs.rsc.org/en/content/articlelanding/2025/mh/d4mh01259c","RegionNum":2,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0
Abstract
Buildings, especially installed windows, account for a large proportion of global energy consumption. The research trend of smart windows leans towards multi-functional integration, concurrently achieving solar modulation and thermal management. However, sometimes a one-time performance switch cannot meet demands, making the design of multi-gradient adjustable smart windows particularly important. The combination of the temperature-responsive optical properties of hydroxypropyl cellulose (HPC), the high specific heat capability of water (sensible heat storage) and the solid–liquid phase transition of κ-carrageenan (latent heat storage) is proposed first and can be used to prepare the thermo-responsive hydrogel and multi-gradient energy-saving smart window with thermo-response and multimodal thermal energy storage (MGES smart window) quickly without long-term polymerization. The MGES smart window has excellent solar modulation capability (ΔTlum = 82.72% and ΔTsol = 68.65%) together with outstanding specific heat absorption ability (c = 4.2 kJ kg−1 K−1) and phase transition heat (ΔH = 1.23 kJ kg−1), showing superior energy saving and conserving performance. In demonstrations, the MGES smart windows can reduce the surface and indoor temperature by more than 15 °C and 10.6 °C compared with normal windows. Simulations suggest that they can cut off 45.1% of building energy consumption. To sum up, the MGES smart windows realize multi-aspect adjustment of energy, opening up a new avenue for green buildings.