Isaac Y Miranda-Valdez, Tero Mäkinen, Sebastian Coffeng, Axel Päivänsalo, Luisa Jannuzzi, Leevi Viitanen, Juha Koivisto, Mikko J Alava
{"title":"Accelerated design of solid bio-based foams for plastics substitutes.","authors":"Isaac Y Miranda-Valdez, Tero Mäkinen, Sebastian Coffeng, Axel Päivänsalo, Luisa Jannuzzi, Leevi Viitanen, Juha Koivisto, Mikko J Alava","doi":"10.1039/d4mh01464b","DOIUrl":null,"url":null,"abstract":"<p><p>Biobased substitutes for plastics are a future necessity. However, the design of substitute materials with similar or improved properties is a known challenge. Here we show an example case of optimizing the mechanical properties of a fully biobased methylcellulose-fiber composite material. We tackle the process-structure-property paradigm using Bayesian optimization with Gaussian process regression to map the processed material composition to the final mechanical properties of new bio-based solid foams. We exploited the fast-to-measure rheological properties of the liquid biofiber suspensions processed into foams to show how these collapse to an auxiliary sub-space of low dimensionality for design. The optimal compositions for methylcellulose-fiber foams shown here correspond to two distinct cases: high methylcellulose content for the formation of strong closed-cell foams, and high fiber contents with approximately equal amounts of methylcellulose for the formation of methylcellulose-bound fiber networks. The novel approach is transferable to other biobased foam compositions with different fibers and additives. This new approach allows the rational design of bio-based plastics replacements by encompassing desired final material properties, descriptors of materials processed, and knowledge of the process.</p>","PeriodicalId":87,"journal":{"name":"Materials Horizons","volume":" ","pages":""},"PeriodicalIF":12.2000,"publicationDate":"2024-12-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Materials Horizons","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.1039/d4mh01464b","RegionNum":2,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0
Abstract
Biobased substitutes for plastics are a future necessity. However, the design of substitute materials with similar or improved properties is a known challenge. Here we show an example case of optimizing the mechanical properties of a fully biobased methylcellulose-fiber composite material. We tackle the process-structure-property paradigm using Bayesian optimization with Gaussian process regression to map the processed material composition to the final mechanical properties of new bio-based solid foams. We exploited the fast-to-measure rheological properties of the liquid biofiber suspensions processed into foams to show how these collapse to an auxiliary sub-space of low dimensionality for design. The optimal compositions for methylcellulose-fiber foams shown here correspond to two distinct cases: high methylcellulose content for the formation of strong closed-cell foams, and high fiber contents with approximately equal amounts of methylcellulose for the formation of methylcellulose-bound fiber networks. The novel approach is transferable to other biobased foam compositions with different fibers and additives. This new approach allows the rational design of bio-based plastics replacements by encompassing desired final material properties, descriptors of materials processed, and knowledge of the process.